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The mathematical theory of the reduction of operator rings is used to investigate some structures 
which can occur in quantum field theory when the postulate that the field operators generate an irre­
ducible ring is relaxed. In particular, it is shown that if a quantum field theory has a commutator which 
commutes with all field operators it is a direct integral of theories in each of which the commutator is a 
scalar. If in addition it satisfies the postulates of Lorentz covariance, existence of an invariant vacuum, 
and mass and energy spectra, then it is a direct integral of generalized free field theories whenever the 
unitary representation of the Lorentz group can be constructed in terms of functions of the field oper­
ators and every state can be constructed by applying field operators on the vacuum. It is also shown 
that the latter two assumptions together with the requirement of a unique invariant vacuum state are 
sufficient to prove that the ring generated by the field operators is irreducible. In other words, under 
these conditions the irreducibility postulate is redundant. 

I. INTRODUCTION 

ONE of the postulates which is often included 
in studies of quantum field theory is that the 

ring generated by "smeared polynomials in the 
field operators" be irreducible. 1 But for many 
purposes it is neither necessary nor desirable to 
limit the scope of investigations by this assumption. 
For example, if a field theory is defined in terms of 
its Wightman functions2 it is possible for the result­
ing set of field operators to be reducible. In fact a 
weighted mean of two sequences of Wightman 
functions is again a sequence of Wightman functions 
so that the set of all sequences of Wightman func­
tions forms a convex set. 3 But only the extremal 
points of this convex set yield theories for which the 

* Supported in part by the Atomic Energy Commission. 
1 This is listed as postulate 6 by R. Haag and B. Schroer, 

J. Math Phys. 3, 248 (1962), which contains a rigorous survey 
of axiomatic quantum field theory. 

2 A. S. Wightman, Phys. Rev. 101, 860 (1956). 
3 E. C. G. Sudarshan and K. Bardakci, J. Math Phys. 2, 

767 (1961). 

field operators generate an irreducible ring.4 It is 
also interesting to note that the theories which do 
not correspond to extremal points will not neces­
sarily have a vacuum state which is the unique 
invariant state. 

In general, the operators representing the observ­
abIes for a quantum mechanical system generate an 
irreducible ring if and only if the system has no 
superselection rules (or equivalently admits no 
supersymmetry transformation).5 However we do 
not wish to assume that the ring of observables 
and the ring generated by the field operators are 
identical; the latter may contain operators, c.g., 
a baryon creation operator, connecting different 
superselection subspaces. 

In this paper we explore some of the situations 
which can occur when the irreducibility postulate 

4 As was discussed in detail in reference 1 by Haag and 
Schroer, this is a general property of the construction of a 
representation of a ring from a positive linear functional on 
the ring. 

5 J. M. Jauch, Helv. Phys. Acta 33, 711 (960). 
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of quantum field theory is relaxed. It is to be 
expected that the presently available models of 
field theories can be extended to yield examples of 
structure richer than have so far been evident. We 
consider in particular the extension of the generalized 
free field theory of Greenberg.6 Under the assump­
tion of irreducibility, it has been shown that if a 
field theory has a commutator which either com­
mutes with all field operators or is translation 
invariant and vanishes for space-like separation of 
its arguments, then the commutator is a scalar. It 
has also been shown that if, in addition to the latter 
property, the field theory satisfies the customary 
postulates of Lorentz covariance, the existence of 
the vacuum state, and mass and energy spectra, 
then the theory is a generalized free field theory.7 
We will see that these results can be generalized 
in a straightforward way when the irreducibility 
postulate is relaxed. 

Our method of investigation is based on the 
mathematical theory of rings of operators. In the 
next section we define some of the main concepts of 
this theory and outline the results which we will 
use. In Sec. III we review the defining properties 
of field operators in terms of this mathematical 
language. The structure of commutators which com­
mute with all field operators is treated in the fol­
lowing section. The result is that the field theory 
is a direct integral of field theories in each of which 
the commutator is a scalar. In the final section, in 
addition to this property of the commutator, we 
postulate Lorentz invariance, an invariant vacuum 
state, and positive energy and square of the mass. 
If we also assume that the unitary representation of 
the Lorentz group can be constructed as functions 
of the field operators, and that all of the states 
of the theory can be obtained by operating with 
field operators on the invariant vacuum state, 
then we can deduce that the theory is a direct 
integral of generalized free field theories. If with 
these latter two assumptions we require the vacuum 
state to be the unique invariant state we can prove 
that the field operators are irreducible. In other 
words, if in a field theory the unitary representation 
of the Lorentz group is constructed in terms of 
functions of the field operators, if there exists a 
vacuum state which is the unique invariant state, 
and if all states can be obtained by applying field 
operators to the vacuum state, then the ring gen­
erated by the field operators is irreducible. 

6 O. W. Greenberg, Ann. Phys. 16, 158 (1961). 
7 A. L. Licht and J. S. Toll, Nuovo cimento 21, 346 (1961); 

G. F. Dell'Antonio, J. Math. Phys. 2, 759 (1961); see also 
R. Acharya, :!'Iuovo cimento 23, 580 (1962). 

II. MATHEMATICAL BACKGROUND 

In this section we give a brief review of the theory 
of operator rings and their reduction. This survey 
is not intended to be complete in any way. Its 
purpose is only to provide enough information to 
define the main concepts used in this paper. No 
proofs are given. For further details we refer the 
reader to the original papers by Murray and von 
Neumann,s Naimark and Fomin,9 and to the lucid 
book by Naimark. 10 

We call either a finite dimensional linear inner­
product space or an infinite dimensional separable 
Hilbert space simply a Hilbert space. ll 

Definition. A set R of bounded linear operators on 
a Hilbert space X is a ring if it is closed under 
multiplication by scalars, addition, multiplication, 
and taking the adjoint. That is, if A and B belong 
to R and a and b are scalars, then aA + bB, AB, 
and A + belong to R. (This is also referred to as a 
*algebra, symmetric ring, ring with involution, etc.) 

We will be mainly interested in rings which contain 
the identity. An example is the ring of all bounded 
operators on the space. 

Definitions. A ring R is weakly closed if it is closed 
in the weak operator topology, that is if An are a 
sequence of operators in R such that for any vectors 
f, 9 in X, Cf, Ang) ~ (f, Ag) for some bounded 
operator A, then A belongs to R. A vector f in X 
is a cyclic vector for a ring R if the set of vectors Af 
for all A in R is dense in X, that is given any vector 
9 in X there exists a sequence of operators An in R 
such that IIAnf - gil ~ O. A ring R is irreducible 
if there is no proper subspace of X which is invariant 
under R, that is if there is no subspace ;m: of X, 
different from X and from the zero element, such 
that At belongs to ;m: for every A in Rand f in ;m:. 

A ring R is irreducible if and only if every bounded 
operator which commutes with every operator in 
R is a scalar multiple of the identity operator 
(scalar operator). An irreducible ring is identical 
with the ring of all bounded operators. Every non­
zero vector is a cyclic vector for a ring if and only if 
the ring is irreducible. 

8 F. V. Murray and J. von Neumann, Ann. Math. 37, 
116 (1936); J. von Neumann, ibid. 50, 401 (1949). 

9 M. A. Naimark and S. V. Fomin, Trans. Am. Math. So('. 
5, 35 (1957). 

10 M. A. Naimark, Normed Rings, translated by L. F. 
Boron (P. Noordhoff, Groningen, 1959). 

11 The assumption of separability of the Hilbert space is 
probably not needed to obtain most of the results of this 
paper, but we need it in order to be able to directly apply the 
considerable work of von Neumann. 
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Definitions. If F is a set of bounded linear operators 
on x, the commutant F' of F is the set of bounded 
linear operators on X which commute with all of 
the operators in F and with the adjoints of all of 
the operators in F. The center ZR of a ring R is the 
intersection ZR = R n R' of the ring and its com­
mutant ring, that is Z R is the set of all elements of 
R which commute with all of the elements of R. 

F' is a weakly closed ring containing the identity 
operator. By applying this operation a second time 
we can form F". Clearly F is contained in F". In 
fact F" is the smallest weakly closed ring which 
contains F and the identity operator. If F itself is 
a weakly closed ring containing the identity operator 
then F" = F. Clearly the center ZR of a ring R is 
an Abelian ring; it is weakly closed if R is. If a 
ring R is Abelian then R is contained in R' or 
ZR = R. A ring R is irreducible if and only if R' 
is the ring containing only scalar operators. This is 
the most simple structure possible for a ring. The 
next most simple structure is that the center of the 
ring contain only scalar operators. 

Definition. A weakly closed ring R is a factor if 
the center Z R of R contains only scalar operators, 
that is if every operator in the ring which commutes 
with every operator in the ring is a scalar. 

Clearly an irreducible ring is a factor, as is the ring 
of scalar operators. If R is a factor then R' is also a 
factor. 

It is far from true that all rings have the simple 
structure of irreducible rings and factors. However 
it turns out that any ring can be built up as a 
generalized direct sum of either of these kinds of 
building blocks, just as all representations of many 
groups can be formed as generalized direct sums of 
irreducible representations. In order to characterize 
the general structure of operator rings we need then 
the concept of a direct integral of Hilbert spaces. 

Definition. Let u(t) be the weight function for a 
Lebesgue-Stieltjes measure on the real line [u(t) is a 
real, nondecreasing, right continuous bounded func­
tion of t for all real t]. For each t let XU) be a Hilbert 
space, and let X be the set of all vector-valued 
functions f of t, with f(t) a vector in X(t), which 
satisfy the conditions: 

(i) For any two functions f and g in X, (f(t), get»~ 
is a u measurable function of t; 

(ii) For any f in X, Ilf(t)11 2 is a u measurable and 
also a u summable function of t, that is 

An inner product is defined in X by 

(f, g) = J (f(t) , get»~ du(t). 

The space X with this inner product is called the 
direct integral of the Hilbert spaces X(t) with respect 
to the measure u. 

It can be shown that X is a linear space if addition 
and mUltiplication by scalars are defined as for 
functions of t, 

(af + bg)(t) = af(t) = bg(t) 

for f, g in X and a, b scalars. Two vectors f and g 
are considered to be identical if f(t) = get) for u 
almost all t (that is except for a set of u measure 
zero). With this identification it can be shown that 
X is a Hilbert space. 

Two Hilbert spaces are equivalent if there exists 
an isometric linear mapping of one onto the other. 
We will freely identify and interchange equivalent 
spaces. If in forming the Hilbert space X as the 
direct integral of the Hilbert spaces X(t), as in the 
above definition, we were to change a set of the 
spaces X(t) corresponding to a set of t of u measure 
zero, or if we exchanged the measure u for another 
measure which is completely continuous with u 

(has the same sets of zero measure), then we would 
get a Hilbert space equivalent to X. For all f in 
X the vectors f(t) form a linear manifold in X(t). 
We can assume that the closure of this manifold 
is X(t). We will use the notation X = f X(t) [du(t)]l/2 
to denote that X is the direct integral of the X(t), 
and we will call xCt) the component spaces of the 
direct integral decomposition of X. For an element 
f in X we will write f = f f(t) [du(t)]!/z. 

Definitions. Let A be a bounded linear operator 
on X. A is reduced by the direct integral decom­
position X = f xCt) [du(t)]l/2 if for every f in X, 
(Af)(t) = A(t)f(t) where A(t) is a bounded linear 
operator on X(t) for u almost all t. A set R of bounded 
linear operators on X is reduced if every operator 
in R is reduced. 

We will write A = f A(t) ddt) and call ACt) the 
part of A in the component space X(t). A particular 
class of operators which are reduced are those 
which are scalar operators in each component space. 
These have the form (Af) Ct) = a(t)f(t) for any f in X, 
where aCt) is a complex valued, u measurable, 
essentially bounded function of t. These operators 
form a weakly closed Abelian ring containing the 
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id{'ntity operator which we will call the kernel ring 
P associated with the given direct integral decom­
position. A necessary and sufficient condition for a 
bounded linear operator A to be reduced is that 
A be in P'. A necessary and sufficient condition for 
a ring R to be reduced is then that R be contained 
in P'. 

Conversely, if we are given a weakly closed 
Abelian ring P containing the identity operator, 
there exists a direct integral decomposition of the 
space X for which P is the kernel ring. Now our 
main question is this: Suppose we are given a 
,,,eakly closed ring R containing the identity 
operator. Can we find a direct integral decomposition 
X = J X(t) [da(t)]1/2 which reduces R such that 
the part of R in each component space X(t) is a 
factor or is an irreducible ring? The answer found 
by von Neumann12 is that any decomposition which 
has a kernel ring P equal to the center R (\ R' of 
the ring R will reduce R such that the part of R in 
the component space X(t) is a factor for a almost 
all t. A necessary and sufficient condition for the 
part of R in almost every component space to be 
an irreducible ring as well as a factor is that the 
center R (\ R' of R be a maximal Abelian subring 
of R,.9 The latter condition is true whenever R 
eontains a subring Q which has the property that 
Q = Q' (Q is called a maximal Abelian ring). 6 It is 
also sufficient that R' be equal to the center Z of R, 
or equivalently that R' be Abelian. In any case we 
ean always find a decomposition of X which reduces 
R into factors, and every operator in the center 
R (\ R' of R will be reduced such that its part in 
{'ach component space is a scalar operator. 

If, instead of the Lebesgue-Stieltjes measure a on 
the real line, we use any Borel measure p on a 
locally compact Hausdorff space, we can define the 
direct integral of Hilbert spaces and the reduction 
of operators and of a ring in a similar manner. 
Within this more general framework there always 
exists a direct integral decomposition of the Hilbert 
space which reduces a given weakly closed ring R 
containing the identity operator for which there is 
a cyclic vector, such that the part of R in p almost 
every component space is an irreducible ring. [3 

p ean be taken to be a measure on a compact Haus­
dorff space X which has the property that open 
sets have positive measure. This has the consequence 
that either X consists of a single point or else can 
be divided into two disjoint measurable sets each 
having positive measure. (Assume that X has at 

12 J. von Neumann, reference 8, Theorem VII, p. 460. 
13 M. A. Naimark, reference 10, p. 515. 

least two distinct points, x and y. Then there exist 
disjoint open sets V and W in X with x in V and 
y in W. Since W has positive measure and is con­
tained in the complement of V, both V and the 
complement of V have positive measure.) 

So far we have considered only bounded operators. 
But the unbounded self-adjoint operators, which 
are often of interest in physics, can be handled very 
easily. 

Definition. An unbounded self-adjoint operator A 
is associated with the ring R of bounded operators, if 
every projection operator Ex in the spectral decom­
position A = J x dEx of A belongs to R. 

If A is associated with R then we can say that R 
contains all bounded functions of A. If R is reduced 
by a direct integral decomposition of the Hilbert 
space then each projection operator Ex will be rp­
duced and A will act as a reduced operator. In such a 
case we will say that A is reduced. 

III. FIELD OPERATOR RING AND ITS REDUCTION 

For every point x of space-time let ¢(x) be a 
neutral scalar field operator on the separable Hilbert 
space X. The rigorous version of this statement is 
that ¢ is an operator valued distribution over 
space-time which is defined as follows. Let S be 
some suitable class of complex testing functions of 
one or several space-time variables, for example 
those which are infinitely many times differentiable 
and vanish at infinity faster than any power of a 
space-time variable. Then ¢ is a linear mapping of 
S into linear operators on X which we denote 
symbolically by 

J f(x)¢(x) d4x, (3.1) 

if the element f of S is a function of a single space­
time variable, and by 

J j'n)(x[ ... xn)¢(x[) ... ¢(xn ) d4x[ ... d4xn' (3.2) 

if j'n) I: S is a function of n variables. It is postulated 
that all of these operators have a common dense 
domain so that they can be added to form "smeared 
polynomials in the field operators." It is also 
postulated that an operator of the form (3.1) is 
self-adjoint whenever f is real, and in general that 
an operator of the form (3.2) is self-adjoint whenever 

r)*(x[, ... xn) = j'n)(xn, ... Xl)' (3.3) 

We denote the set of all such self-adjoint operators 
by F, Since any function j'n) belonging to S can be 
written as 
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where gCn) and h Cn) belong to S and satisfy the 
reality condition (3.3) [set 
gCn)(x

l 
••• xn) = !{fcn)(x

l
, ••• xn) + /n)'(x", .. ·xI)} 

and 
h Cn) (XI' ... x,,) 

= -i/2 {fCn)(X I ... Xn) - /")'(xn, ... XI)}], 
we see that every operator of the form (3.2), or 
any smeared polynomial in the field operators, has 
form A + iB where A and B are self-adjoint oper­
ators which are members of the set F. 

Now all of the operators in F will not necessarily 
be bounded so we can not form a ring containing 
F. But if we let F' be the set of all bounded linear 
operators which commute with every operator in F, 
that is commute with every projection operator 
which occurs in the spectral decomposition of an 
operator in F, and if we let R = F", then Rand 
F' (= R') are weakly closed rings containing the 
identity operator which have the following prop­
erties. 14 Every bounded operator in F is in R, as 
is every projection operator which occurs in the 
spectral decomposition of an operator in F. In fact, 
R is the minimal weakly closed ring containing 
these projection operators. We may say that R is 
the smallest weakly closed ring containing bounded 
functions of the operators in F, or containing 
bounded functions of "smeared polynomials in the 
field operators." 

Every unbounded operator in F is associated with 
R, so that if R is reduced by a direct integral decom­
position of the Hilbert space X then F is also reduced 
according to the terminology introduced in the 
preceding section. In such a situation we will say 
that the field operator ¢ is reduced since it gives 
"smeared polynomials" all of which are reducible. 

IV. FIELDS WITH COMMUTATORS WHICH 
REDUCE TO SCALARS 

We will take the statement that the commutator 
[¢(x), ¢(y)l- is a scalar (c number) to mean that for 
every testing function /2) (X, y) belonging to S the 
oprrator 

Cf (,) = J t'2)(X, y)[¢(x)¢(y) - ¢(y)¢(x)] d'x d4y 

= J [f2)(X, y) - j(2\y, x)]¢(x)¢(y) d4x d4y, 

is a scalar operator on X. Similarly, the statement 
that the field has a vanishing double commutator, 

implies that when integrated with any testing 
function /3) (X, y, z) belonging to S the left-hand 
side of the above equation gives the zero operator 
on X. But, Eq. (4.1) is also taken to imply that 

[[¢(x) , ¢(y)]_, ¢(ZI)¢(Z2)]_ = ¢(Z,) [[¢(x) ,¢(y)]-, ¢(Z2)]­

+ [[¢(x) , ¢(y)]_, ¢(z,)]_ ¢(Z2) = 0, 

and by induction that 

By integrating the latter equation with testing 
fUllctions of the form /n '2) (x, y, ZI, ... Zn) = 
/2) (x, y)/n) (ZI' '" zn) where /2) and /n) belong 
to S we can deduce that for any /2) in S the operator 
Cf (,) commutes with every operator in F, or com­
mutes with every operator in R. This implies that 
Cf (,) is associated with the center ZR = R n R' of R. 

Now if R is irreducible we have that Cf (,) is a 
scalar operator. But this conclusion can be drawn 
from the weaker assumption that R is a factor. In 
general it is expected that the assumption that R 
is a factor will be sufficient to prove most of the 
statements of this type which are of interest in 
field theory. In any case if R is not a factor we can 
find a direct integral decomposition of the Hilbert 
space X which reduces R into component rings which 
are factors.'5 Since for each /2) in S the commutator 
operator Cf (,) is in the center of R, it will be reduced 
to component operators each of which is a scalar 
operator on the component space. Hence, the field 
theory has the structure of a direct integral of 
field theories, in each of which the commutator is 
a scaJar, whenever Eq. (4.1) is true. 

By the proof of Licht and Toll/ using the Jacobi 
identity, it can be shown that Eq. (4.1) is valid 
if the commutator [¢(x), ¢(Y)l- is translation in­
variant and vanishes for space-like x - y. We can 
summarize the results of this section then in the 
following. 

Theorem If for a set of field operators the double 
commutator vanishes, that is if equation (4.1) is 
true, then there exists a direct integral decomposition 
of the Hilbert space X which reduces R into factors, 
such that for every /2) belonging to S the com­
mutator operator Cf (,) is reduced such that its part in 
each component space is a scalar operator. A par­
ticular case in which this is true is when the com­
mutator [¢(x) , ¢(Y)l- is translation invariant and 
vanishes for space-like (x - V). 

[[¢(X), ¢(y)]_, ¢(z)]_ = 0, (4.1) I. These factors will be irreducible if we ass1Ime that R 

14 M. A. l"aimark, reference 10, pp. 444-450. 
contains a complete set of commuting observables, that is a 
maximal Abelian ring. Bel' Sec. II and J. M. Jauch, refer('nr(' 5. 
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V. DIRECT INTEGRALS OF GENERALIZED 
FREE FIELDS 

In this section we are interested in some particular 
cases where the reduction of the field operator ring 
R into factors yields a generalized free field theory 
in each component space of the associated direct inte­
gral decomposition of the Hilbert space X. Hence, 
we postulate that the following conditions, having 
to do with Lorentz invariance, the vacuum state, 
and the mass and energy spectrum, are satisfied: 

(a) There exists a set of unitary operators U(a, A) 
on X which form a true representation of the proper 
inhomogeneous Lorentz group, that is 

U(a l , AI )U(a2, A2) = U(a l + Ala2, AI A2). 

(b) The field operators transform according to 

U(a, A)¢(x) U+(a, A) = ¢(Ax + a). 

Let U be the ring generated by the U(a, A). 
That is U = {U (a, A)} 1/ is the smallest weakly 
closed ring containing all of the U(a, A), Clearly U 
contains the identity operator. We assume that the 
operators U(a, A) can be formed as functions of the 
field operators, or more precisely we postulate that 

(c) U is contained in R.16 

We also assume that there exists at least one in­
variant state which we call the vacuum state, that 
is we postulate: 

(d) There exists a vector w in X, with (w, w) = 
IlwW = 1, which is invariant under the inhomoge­
neous Lorentz transformation operators U(a, A), 
that is U(a, A)w = w for every U(a, A).17 

While we have chosen not to postulate that the 
field operators form an irreducible ring, we need to 
limit the size of the Hilbert space X with respect 
to the ring R by assuming that all of the state vectors 
can be obtained by operating with "smeared poly-

16 If we assume that R can be reduced into irreducible 
rings by a decomposition of the Hilbe~t space. into .a discrete 
direct sum then we can prove that U IS con tamed m R. For 
then, each unitary operator U(a, A) must m~p ~ach component 
space onto a single component space, that IS, It must at w?rst 
introduce a permutation of the component spaces. But, smce 
each of these operators is continuously connected to ~he 
identity operator, it must leave every component space m­
variant which implies that U must be reduced and hence 
be contained in R. See R. Hagedorn, Nuovo cimento Suppl. 
12 73 (1959). This assumption ha~ also been proved, for the 
ca~e of a Wightman theory with local commutativity, by 
H. J. Borchers, "On Structure of the Algebra of Field Oper­
ators" Institute for Advanced Study, Princeton, New Jersey, 
(preprint). Borchers has also proved, for a Wightman field, 
that the Hilbert space is separable. In this regard see also D. 
Ruelle, "On the Asymptotic Condition in Quantum. Field 
Theory," (to be published, Helv. Phys. Acta), AppendiX. 

17 Note that we do not assume that w is the unique vector 
invariant under every U(a, A). 

nomials in the field operators" on the vacuum state. 
Thus we postUlate the "completeness" property 
of the field operators that 

(e) The vector w of postulate (d) is cyclic for R, 
that is the vectors of the form Aw, with A in R, are 
dense in X. 

The energy-momentum operators P ~ are defined 
as the generators of the translation operators 
U(a, 1) = eiP

."" where P·a = Poao - P·a and the 
mass operator M is defined by M2 = p 2 = P~ _ p2. 
We postulate that the energy-momentum four-vector 
lies in the forward light cone. 

(f) The self-adjoint operators Po and lIr are 
positive. 

Now suppose we decompose the Hilbert space X 
into a direct integral of Hilbert spaces such that 
the ring R is reduced into factors. We would like 
to know that the conditions (a) through (f) are 
satisfied by the parts of the field operators in each 
component space, so that the theory can be thought 
of as a direct integral of field theories in each of 
which these conditions, plus the condition that the 
ring generated by the field operator is a factor, are 
satisfied. Since U is contained in R each operator 
U(a, A) will be reduced, and the parts of these 
operators in anyone component space will form a 
representation of the proper inhomogeneous Lorentz 
group and will transform the parts of the field 
operators covariantly. It is clear that the part of 
the ring U in any component space will be contained 
in the part of the ring R in that component space. 
Also the properties of the generators of the trans­
lation operators, in particular the positiveness of the 
energy and square of the mass, will hold for the 
parts of these operators in each component space. 
Hence we have that conditions (a), (b), (c), and (f) 
are satisfied for the part of the field theory in each 
component space. The question which remains then 
is whether each component space has a vacuum state. 
If we can find a nonzero, cyclic, invariant state we 
can always normalize it; so a positive answer to this 
question is given by the following. 

Theorem. Let U be contained in R and let w be a 
vector which is cyclic for R and invariant under each 
U(a, A). Then if R is reduced by a direct integral de­
composition of the Hilbert space X= J X(t) [du(t)]i/2, 
the component w(t) ofthevectorw = J wCt) [duCt)]l/2 
is a nonzero (normalizable) vector in X(t) which is 
invariant under the part in x(t) of each U(a, A) 
and is cyclic for the part of R in X(t) for u almost 
all t. 
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Proof. Let K be the set of all t for which IlwCt) 112 > 0. 
Since Ilw(t) W is a measurable function, K is a 
measurable set, and w belongs to f K xCt) [dU(t)]1/2 
which is a subspace invariant under R. But then 
we have that 

Rw C R L x(t) [du(t)r /2 = L x(t) [du(t)r /2 . 

Since w is cyclic this implies that 

x = L x(t) [du(t)r /2 
, 

which means that K differs from the space of all t 
only by a set of u measure zero. Hence we have 
proved that wet) is nonzero for u almost all t. Let 
V = f Vet) duet) be any operator for which Vw = w, 
which we can write as IlVw - wW = 0, or 
f IIV(t)w(t) - w(t)W duCt) = 0, which implies that 
V(t)w(t) = wet) for all t except possibly a set of 
u measure zero. By letting V be in turn each of a 
finite number of generating elements of the repre­
sentation of the proper inhomogeneous Lorentz 
group by the unitary operators U(a, A), we can 
deduce that wet) is invariant under the part in 
X(t) of each operator U(a, A) for all t not in the 
union of the finite number of corresponding sets 
of zero u measure, that is for u almost all t. Finally, 
for all operators A belonging to R, the vectors 

1/;A = Aw = J A(t)w(t)[du(t)r /2 = J 1/;A(t)[du(t)r /2 

form a dense set in x. For any t the vectors 
1/; A (t) = A (t)w(t) form a linear manifold met) in 
X(t). The closure Cl (m(t» of this linear manifold 
is a subspace of X(t) and f Cl (m(t» [duet) ]1/2 is a 
subspace of X which contains the dense set of 
vectors 1/; A' Hence this subspace is equal to the 
whole of X and Cl (m(t» = X(t) for u almost all 
t or the vectors A (t)w(t) are dense in X(t) for u , . 
almost all t. Hence we have shown that wet) IS 

cyclic for the part of R in :fc(t) for u almost all t, 
which completes the proof of the theorem. 

We next note that, if we make the additional 
assumption that the vacuum vector w represents 
the unique state which is invariant under the 
representation of the proper inhomogeneous Lorentz 
group, we can prove that the ring R generated by 
the field operators is a factor or even that it is 
irreducible. In other words, under the assumptions 
we have made, the postulate of the irreducibility 
of the field operators is implied by the postulate 
of the uniqueness of the vacuum. 

Theorem. Let the ring C" generated by the repre-

sentation of the proper inhomogeneous Lorentz 
group belong to the ring R generated by the field 
operators. If there exists a vector w which is cyclic 
for R and which is the unique (up to a scalar factor) 
vector invariant under each U(a, A), then R is a 
factor which is in fact irreducible. 18 

Proof. Let X = f X(t) [duCt)]1/2 be a decomposition 
of the Hilbert space which reduces R into factors. 
Then in the space of all t there is either only one 
set, consisting of a single point, which has positive 
measure, in which case the reduction of R is trivial 
and R is itself a factor, or there is a set K of t such 
that both K and its complement K C have positive 
measure. In the latter case let EK be the projection 
operator defined by 

(EKf)(t) = IK(t)f(t) 

for any f = f f(t) [dU(t)]1/2 belonging to X, where 
IK(t) is the real function of t which is equal to one 
when t is in K and is equal to zero otherwise. Then 
EK belongs to R'. For any inhomogeneous Lorentz 
transformation operator U(a, A) we then have that 

U(a, A)EKW = EKU(a, A)w = EKw, 

or EKw is invariant under each U(a, A). Now by 
the preceding theorem we have that IIEKwW = 

f K Ilw(t) W duet) >'" 0, for otherwise Ilw(t) W would 
vanish on the set K of positive measure. Similarly, 
since K C has positive measure, we can deduce that 
w - EKw = (1 - EK)W = EK,w >'" O. But this 
contradicts the uniqueness of w. Hence we must 
conclude that R is a factor. 

By using a direct integral decomposition of the 
Hilbert space that reduces R into irreducible rings 
instead of just into factors we can construct a 
completely analogous argument to show that R must 
be irreducible. This completes the proof of the 
theorem. [Note that the above proofs do not depend 
on the specific transformation properties of the 
field operators or the mass and energy conditions 
of our postulates (b) and (f). Neither do they depend 
on any properties of the Lorentz group. The proof 
remains valid for any symmetry group, e.g., the 
Galilei group.] 

We have chosen not to postulate that the ring 
R generated by the field operators is a factor (or an 
irreducible ring), but to investigate the consequences 
of the weaker postulates that the ring U generated 

18 This result is also contained in the work of R .. J. Bor­
chers, and of D. Ruelle,ts within the framewo,rk of WIghtman 
field theory. In addition, the converse of thIS theorem, that 
irreducibility implies uniqueness of the vacuum, has been 
proved for ~ightman theories b~ Borchers. The work re­
ported in thIS paper was done mdependently of that of 
Borchers and that of Ruelle. 
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by the unitary representation of the proper inhomo­
geneous Lorentz group is contained in R and that 
there exists a vector w which is invariant under 
each U(a, A) and cyclic for R. We have seen that 
we can have two kinds of situations. If we postulate 
that the vacuum vector w is the unique vector 
which is invariant under each U(a, A), we can 
prove that R is irreducible. If we do not postulate 
the uniqueness of the vacuum, R may not be a factor, 
but we can always reduce it into factors and the 
properties associated with Lorentz covariance and 
the vacuum will hold in the part of the field theory 
in each component space of the direct integral 
decomposition which effects this reduction. 

In particular, suppose that a field theory satisfies 
postulates (a) through (f) and in addition has the 
property that the commutator commutes with all 
field operators, or more precisely Cf ,,) belongs to 

R n R' for alll 2
) in S. Then, if we decompose the 

Hilbert space so that R is reduced into factors, the 
commutator operator Cf ,,) will be a scalar in each 
component space. But the postulates (a) through 
(f) will also be valid for the part of the theory in 
each component space. By the argument of Licht 
and ToW the commutator then has the generalized 
free field form in each component space and the 
part of the theory in each component space is 
equivalent to a generalized free field theory. Thus 
we summarize and conclude with the following state­
ment: If a field theory satisfies postulates (a) through 
(f) it is equivalent to a direct integral of gener­
alized free field theories if it has the property 
that [[lj>(x), lj>(Y)l-, lj>(z)l- = O. In particular, it will 
have the latter property whenever the commutator 
is translation invariant and vanishes for space-like 
separations of the arguments. 
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sponding problem in perturbation theory. 1 Here 
the situation is somewhat simpler because the con­
tribution from a given Feynman graph is known, 
in the form of a multiple integral. With the use of a 
generalization of the now well-known lemma of 
Hadamard,2 the positions of all possible singularities 
of such an integral may be obtained, in principle, by 

1 See, for example, the lectures of J. C. Polkinghorne and 
of R. J. Eden in Brandeis University Summer Institute, 
Lecture Notes 1,1961 (New York, 1962). 

2 This lemma was first used in quantum field theory by 
R. J. Eden, Proc. Roy. Soc. (London) A210, 388 (1952). For 
derivation of the Landau equations see J. C. Polkinghorne 
and G. R. Screaton, Nuovo cimento 15, 289 (1960). 
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properties associated with Lorentz covariance and 
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In particular, suppose that a field theory satisfies 
postulates (a) through (f) and in addition has the 
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sponding problem in perturbation theory. 1 Here 
the situation is somewhat simpler because the con­
tribution from a given Feynman graph is known, 
in the form of a multiple integral. With the use of a 
generalization of the now well-known lemma of 
Hadamard,2 the positions of all possible singularities 
of such an integral may be obtained, in principle, by 

1 See, for example, the lectures of J. C. Polkinghorne and 
of R. J. Eden in Brandeis University Summer Institute, 
Lecture Notes 1,1961 (New York, 1962). 

2 This lemma was first used in quantum field theory by 
R. J. Eden, Proc. Roy. Soc. (London) A210, 388 (1952). For 
derivation of the Landau equations see J. C. Polkinghorne 
and G. R. Screaton, Nuovo cimento 15, 289 (1960). 
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solving a set of simultaneous equations. These 
equations are commonly known as the Landau 
equations.3 

The Landau equations are in most cases too 
complicated to solve algebraically and a prescription 
has been given for obtaining solutions by means of 
a geometrical construction.3,. This is done by 
drawing a so-called dual diagram, \vhich is a vector 
diagram in which each four-momentum of the 
Feynman graph is on the mass shell. 

One is tempted to suppose that these dual dia­
grams have a general applicability, independent of 
perturbation theory.3 This hope is strengthened by 
the methods found for evaluating the discontinuity 
across the cut attached to a given Landau singu­
larity: in the prescription for this evaluation no 
reference need be made to perturbation theory.5 In 
fact it has recently been shown that the presence 
of all the singularities of perturbation theory is 
necessary in any unitary theory.6 

Our main purpose here is to show that the con­
ventional dual diagrams do not represent all possible 
solutions of the Landau equations. The extra solu­
tions will be called second-type solutions and corre­
spond to infinite values for some of the components 
of the internal momenta in the Feynman graph. 
This does not imply that the resulting singularities 
of the Feynman integral depend on the range of 
integration over internal momenta being infinite. 
They would be present also if the range of integration 
were finite and arise from distortions of the integra­
tion contours, consequent on analytic continuation, 
extending to infinity. In the case of the finite 
integral there are additional singularities associated 
with the end points of the integration. The latter 
are absent in the infinite integral because the 
infinite contours of integration are topologically 
closed. 

After a review of conventional dual diagram 
analysis in Sec. 2, we give in Sec. 3 some simple 
examples of second-type singularities. These are all 
of pure second type, for which the positions of the 
singularities are independent of the masses of the 
internal particles. They are given by the Gram 
determinant equation7 

a L. D. Landau, Nuclear Phys. 13, 181 (1959). 
4 J. C. Taylor, Phys. Rev, 117,261 (1960). 

(1) 

• R. Cutkosky, J. Math. Phys. 1,429 (1960). 
6 J. C. Polkinghorne, Nuovo cimento 23, 360 (1962); 

H. P. Stapp, Phys, Rev. 125, 2139 (1962). . 
7 We shall use arrows throughout to denote vectors III 

Lorentz space. Bold type is used to denote vectors and ma­
trices in the space introduced in Sec. 2. 

Here the Pi represent any (E - 1) of the E external 
momenta of the graph. 

A general analysis of pure second-type singularities 
is described in Secs. 4 and 5. This analysis requires 
some modification when applied to single-loop 
graphs and this is discussed in Sec. 6. Here there 
arises the property that the singularity may be 
absent from all Riemann sheets of the function. 
The condition for the presence of the singularity 
involves the dimensionality of space, the spins of 
the participating particles, and the details of their 
interactions. It has previously been observed that 
the dimensionality of space has an important 
influence on analyticity properties,8,9 but the 
question of spins has been supposed to be irrelevant. 

In Sec. 7 mixed second-type singularities are 
analyzed in which some internal momenta are 
infinite and others not. The positions of the singu­
larities depend on the internal masses associated 
with, the noninfinite momenta. In Sec. 8 we discuss 
the application to second-type singularities of the 
methods that have been developed1o

•
11 for investi­

gating the physical sheet properties of Landau 
singularities. It is concluded that for the three- and 
four-point function pure second-type singularities 
do not appear on the physical sheet. 

2. CONVENTIONAL DUAL DIAGRAMS 

We first briefly review the conventional dual 
diagram analysis and establish our notation. The 
contribution from a general Feynman graph is the 
multiple integraf 

_ J p(g) B( ~ ai - 1) D dai II d"l~, 
fez) - c v , (2) 

1/;' 

with 
~ ~ - 2 1/;(15, k, a) = ~ a;(qi - m,). (3) 

Here N is the number of internal lines of the graph 
and ai, gi, mi are, respectively, the Feynman integra­
tion parameter, the momentum, and the mass asso­
ciated with the ith line. p(q) is a polynomial whose 
structure depends on the spins of the internal parti­
cles; to begin with we shall suppose all particles to be 
spinless, so that peg) = 1. The integral I is a function 

8 P. V. Landshoff, Nuclear Phys. 20, 129 (1960). 
9 G. Kiillen and H. Wilhelmsson, Kg!. Danske Videnskb. 

Selskab, Mat-fys. Skrifter 1, No.9 (1959). 
10 R. J. Eden, Phys. Rev. 121, 1566 (1960); P. V. Landshoff, 

J. C. Polkinghorne, and J. C. Taylor, Nuovo cimento 19, 
939 (1961); R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, 
and J. C. Taylor, Phys. Rev. 122,307 (1961). 

11 R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, and 
J. C. Taylor, J. Math. Phys. 2, 656 (1961). 



                                                                                                                                    

596 FAIRLIE, LANDSROFF, NUTTALL, AND POLKINGRORNE 

of various scalar products z of the external vectors 
p for the graph. n is the dimensionality of Lorentz 
space and so of course is usually taken to be equal 
to 4. 

The integration variables k; in (2) are a set of 
independent momenta, one running around each 
independent closed loop of the Feynman graph. 
Each momentum q. is composed of sums and 
differences of the k and p. Hence if; in (3) has the 
structure7 

if;(p, k,a) = p.Ai{ - 2kT.Bp + (pT. rp - u), (4) 

where u = E. aim~. 
Here A, B, r are, respectively, l X l, l X (E - 1), 

(E - 1) X (E - 1) matrices whose elements are 
linear in a, and l is the number of independent 
closed loops in the Feynman graph. We recall that 
E is the number of external lines of the graph, so 
that there are (E - 1) independent vectors p 
occurring in (4). k and p are vectors in the space of 
the matrices; in this space k has l components 
which are the k;, and p has (E - 1) components 
which are the independent p. Each such component 
is itself a Lorentz vector. Thus, for example, kT

• Ai{ 
represents a double sum 

both over the matrix indices i, j, and over the 
Lorentz index J.L. 

It is a simple matter to perform the integration 
over the k in (2) explicitly. The result, apart from 
a numerical factor, is 

C'Y-(!/2)n(l+1) o(E ai - 1) I1 dai 

fez) = J D<V-\1/2)nl (5) 

Here 
C = det A (6) 

and D = CD', where D' is the result of eliminating 
k from if; according to the equations 

aif;/ak; = 0 for each j. (7) 

In the notation of (4) these equations are 

Ai{ = Bp (8) 

and lead, writing X = adj A, to the equation 

D = _(Bp)T .X(Bp) + (pT. rp - u)C. (9) 

This last result is valid even when C = 0, though 
D' is not then defined. 

According to the generalized Hadamard lemma 2 

the necessary conditions for a singularity of I are, 
using the representation (5), 

a; aD/aa; = 0 for each i. (10) 

Equations (10), together with (7), are equivalent 
to those obtained on application of the lemma 
directly to the representation (2): 

aif;/ak; = 0 for each ], (7) 

and 

ai aif;/aai = 0 for each z. (11) 

Using (7) and (11) we obtain from (3) the Landau 
equations 

E aiqi = 0 for each j, (12) 

and 

ai(q~ - m:) = 0 for each~, (13) 

where L; in (12) denotes summation round the 
jth closed loop of the graph. 

Disregarding for the moment the possibility of 
anyai = 0, we see that (13), together with momen­
tum conservation, leads to a vector diagram in which 
each line is on the mass shell. The conditions (12) 
determine the ai and in addition impose certain 
geometrical constraints on the diagram. The vector 
diagram with these constraints is commonly known 
as the dual diagram for the graph. For example, in 
the case of the single-loop triangle graph, (12) 
implies a linear relation among the three internal 
vectors, so that these vectors and therefore the 
whole dual diagram are in a plane. (Unfortunately 
the geometrical constraints implied by (12) are not 
always as simple as this). Solutions of (12) and (13), 
for which some ai = 0, lead to dual diagrams for 
graphs obtained from the given one by "short 
circuiting" the corresponding internal lines. 

The general dual diagram contains a closed 
polygon formed by the external vectors, thus 
ensuring the momentum is conserved overall. The 
squares of the lengths of the various diagonals of 
the polygon are just the scalar products z. The 
remaining lines of the dual diagram, the internal 
vectors q, impose a single constraint on the shape 
of the polygon and thus one obtains a single equa­
tion, relating the z and involving the internal 
masses mi, that is the manifold of possible singu­
larities in multidimensional complex z space. This 
manifold is known as the Landau curve. 

It will be found that for a second-type singularity 
the equation of the manifold in z space is just the 
determinantal relation (1) that arises when the 
dimensions of the space spanned by the E external 
vectors is less than (E - 1), or more generally when 
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there exists a subspace of dimension less than 
(E - 1) such that the component of each external 
vector p perpendicular to this subspace has zero 
length. The equation does not involve the internal 
mass m. and so does not correspond to a dual 
diagram of the conventional type. 

3. EXAMPLES OF SECOND TYPE SINGULARITmS 

The simplest graph that one can consider is that 
of Fig. 1, the single-loop self-energy graph. Un­
fortunately this is divergent in four dimensions but 
we can consider it when n = 3 and it converges. 
The conventional dual diagram analysis reviewed in 
Sec. 2 gives as the equation of the Landau curve 

X(s, mi, m;) 

== [s - (m, + m2)2][s - (m, - m2)2] = 0, (14) 

where p2 = s is the square of the external momentum 
and m" m2 are the internal masses. This equation 
combines the normal threshold s = (m, + m2)2 with 
the pseudothreshold s = (m, - m2)2, the former 
representing a singularity on the physical sheet and 
the latter only on unphysical sheets. 

According to the prescription of CutkoskyS the 
discontinuity of the Feynman amplitude across the 
cut attached to either of these singularities is 

f o(P - m~) o[(p + k)2 - m2]2 dnk. 

For n 3 the result of this integration is propor-
tional to 

(15) 

This expression has a singularity at s 0 that is 
not given by the conventional dual diagram analysis. 
Since (15) is the difference between the values of the 
original Feynman function on two of its Riemann 
sheets the original function possesses this singUlarity 
also, though not on the physical sheet. This provides 
an example of a second-type singularity. 

A simple explanation for its occurrence can be 
given in this particular case. The Feynman function 
is 

f 3~ - 1 
I = d k -2 2 ~ - 2 2 • 

(k - m,)[(k + p) - m2] 
(16) 

The content of the Landau equations (12) and (13) 
is that the spheres P = mi and (k + p)2 = m; in 
k space, that are the surfaces of singularity of the 
integrand, should touch. The condition for them to 
touch at a finite point is 

p2 = (m, ± m2)2. 

However, if their centers coincide or are joined by a 

FIG. l. The single­
loop self-energy 
part. 

zero-length vector, that is if p2 = 0, they touch at 
infinity, giving the second-type singularity. We shall 
find that all the new singularities are associated with 
pinches occurring at infinity in the k integrations. 

Another instructive example is provided by the 
single-loop triangle graph. For this graph the inte­
gration for a derivative of the Feynman function 
for n = 4 was performed by Kiillen and Wightman'2 
and only the singularities of the conventional 
Landau analysis appear.'3 The function itself for 
n = 4 has been computed by WUI4 and contains an 
extra singularity which is a second-type singularity. 
Its presence was pointed out by Cutkosky, S who 
finds that the discontinuity across the cut attached 
to the leading singUlarity corresponding to all the 
lines being on the mass shell is 

1/[4 v'\(z, , Z2, Z3)], 

where the z are the squares of the three external 
momenta. Thus the Feynman integral has a singu­
larity given by 

X(z" Z2, Z3) = ° (17) 

on the unphysical sheet reached by passing from 
the physical sheet through the cut attached to the 
leading singularity. IS Equation (17) is just the Gram 
determinantal condition (1). 

The integral computed by millen and Wightman 
differs from the Feynman integral in that for it the 
power of D in the representation (5) is two instead 
of one. It is of interest that for n = 2 the KW 
integral is just the correct Feynman integral, so 
that the presence of the second-type singularity for 
the triangle graph depends on the dimensionality 
of Lorentz space. The four-point single-loop graph 
has the same property: for n = 4 the second-type 
singularity does not appear, but it does for n = 5. 

4. SECOND TYPE SOLUTIONS OF THE 
LANDAU EQUATIONS 

We consider now graphs with more than one loop 
and show that when C, defined by (6), is put equal 

12 G. Kallen and A. S. Wightman, Kg!. Danske. Videnskb. 
Selskab Mat.-fys. Skrifter 1, No.6 (1958). 

13 M. Fowler, P. V. Landshoff, and R. W. Lardner, Nuovo 
cimento 17,956 (1960). 

14 A. C. T. Wu (private communication). 
,6 In the integral of Kallen and Wightman this singularity 

is a pole and so has no cut attached to it. 
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to zero there are many solutions of Eqs. (10). Since 
the latter equations are the Hadamard equations 
for the representation (5), corresponding singularities 
for fez) are expected to occur in general. Our new 
solutions of Eqs. (10) also satisfy Eqs. (12) but 
are not at first sight generally compatible with (13). 
This is paradoxical since we have said that (12) 
and (13) are equivalent to (10); the resolution of 
this difficulty will be given in Sec. 5. 

Let C = 0 and suppose that l X l matrix A is of 
rank (l - 1). Then the adjoint of A can be written 

for If, chosen as above provided that if; = 0 also. 
Thus there are many solutions to these equations. 

If in the above we choose X = 0 we may dispense 
with the condition that the solution k to (22) be a 
linear combination of the p and we obtain similar 
results. Thus the Hadamard equations are solved 
by applying (12) to any vector diagram such that 
the (E - 1) vectors p that are generally independent 
fulfil the Gram condition (1) and the single con­
straint 

if;(p, k, a) = O. (26) 

x = KK T
, 

where the column matrix K satisfies 

(1S) It is not necessary that the internal vectors be on 
the mass shell, so that (13) need not hold. 

AK = O. (19) 5. PINCHES AT INFINITY 

Let A be any column matrix and A. a zero-length 
vector in Lorentz space: 

X2 = o. (20) 
Suppose also 

X·p = 0 (21) 

for each external vector p of the graph under con­
sideration. 

Let k be vectors that are linear combinations of 
the p and satisfy the equation 

(22) 

A necessary and sufficient condition for such If, to 

exist is that 
(23) 

Equations (21) and (23) together require that there 
be a linear combination of the vectors p that is equal 
to zero-length vector whose scalar product with each 
p is zero. Thus they lead to the Gram condition (1) 
characteristic of all pure second-type singularity 
curves. 

If we denote differentiation with respect to ai by 
the subscript i we obtain from (9) 

Di = _(Bp)T.XiAk + (pT. rp - rr)Ci . (24) 

Here we have used the condition C = 0 and Eqs. 
(IS) and (19), together with the fact that the matrix 
A is symmetric, to eliminate several terms. Now 

XA = G, 
so that 

X .. A + XA i = Gi , 

and hence 
Di = Giif;(p, k, a). (25) 

Thus the Hadamard equations Di = 0 are satisfied 

We now show how these results obtained for the 
representation (5) can be reconciled with representa­
tion (2). We shall find that the second-type solutions 
arise out of solutions of the Landau equations for 
which the If, are infinite. We find that the vector 
diagram of the end of Sec. 4 has a different signifi­
cance from a conventional dual diagram. 

In order to make infinity accessible to our analysis, 
it is convenient to introduce homogeneous coordi-

k = K/t, 
so that the hyperplane at infinity is 

1=0. 
Define 

if;cP, k, I, a) KT·AK - 2K T .BpI 

+ (pT. rp - rr)s2. 

The conditions for an extremum of if; are 

8if;/8K = 0, 8if;/81 = 0, 

which on I = 0 give 

AK = 0, 

K1'.Bp = 0, 

YC·AiK = O. 

8if;/8a = 0, 

(27) 

(2S) 

(29) 

(30) 

Equations (30) are given a solution in the fol­
lowing way. Choose the a so that G = O. There then 
exists a column matrix K satisfying (19). Take 

K = KX', (31) 

where X' is a Lorentz vector, chosen such that 

X' . (K 1'Bp) = 0 (32) 

16 This may be regarded as a transformation of the inte­
gration variables. Then there is one variable too many, so 
that one of the components of one of the K must be taken 
constant. The Jacobian is simple to evaluate. 
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to satisfy the second equation in (30) and such that 

(33) 

to satisfy the third equation in (30). 
The above solution exists for all p and we can 

therefore deduce that it does not correspond to a 
singularity of the Feynman integral. 

The reason for this is as follows. The general 
idea behind the Hadamard lemma" is that a singu­
larity of the multiple integral arises for z such that 
the hypercontour over which the integration is 
performed cannot be continuously distorted so as 
to avoid intersecting the manifolds on which the 
integrand is singular, that is, the hypercontour is 
"pinched" by the singularities. The Landau equa­
tions are necessary conditions for such a pinch to 
occur. But if these equations are satisfied for all z 
and if the integral is known to exist for some value Zo 

of z, they are not sufficient to produce a singUlarity. 
This is because, since the integral is defined at Zo, 

the hypercontour is not trapped at Zo and so as one 
continues analytically from Zo it does not become 
trapped unless there is a charge in the topological 
character of the intersection of the hypercontour 
with the manifold of singUlarity of the integrand. 

We therefore seek the condition for Eqs. (29) to 
be satisfied also at a point in the integration space 
adjacent to one of the solutions already found. Let 
this point be 

K+ 15K, a + Da. 

Then (29) requires 

A 15K = Bp DS - DAK~' - DKT·Bp 

+ (p7'. rp - u) ~S - ~'KT. DBp = 0, 

~'.KTAi 15K - ~'.KTB,p DS = 0. 

(34) 

The first of these equations is equivalent to (22) 
with k set equal to DK/Ds. If },., is made to satisy 
(21) rather than the weaker condition (32), the 
second equation in (34) is equivalent to (26). The 
third equation of (34) is most simply satisfied by 
taking},.' = 0, or otherwise by making oK a linear 
combination of the p. 

We have thus reproduced the conditions for the 
construction of the vector diagram discussed at 
the end of Sec. 4. The internal lines of this vector 
diagram are not on the mass shell, but since they 
do not in fact represent the internal momenta for 
the Feynman graph, only increments thereof, this 
does not imply that for second-type singularities 
the internal vectors are not on the mass shell. 

Finally, we note that for graphs with six or more 
external lines all points in a four-dimensional space 
lie on the Gram determinant curve. This does not 
mean, of course, that the whole of space is singular 
on some sheet of the function. As before, it is 
necessary to seek further conditions expressing an 
increase in the degeneracy of the singularity mani­
fold of the integrand at infinity. 

6. SINGLE-LOOP GRAPHS 

The general analysis of the preceding two sections 
does not immediately apply to single-loop graphs 
for two reasons. In the first place, for a single loop 

C = Lai' 
i 

and so its vanishing is inconsistent with the il func­
tion in the integral representation. This means that 
our solutions will correspond to infinite a. The second 
point of difference is that, for a single-loop graph, 
the condition (26) cannot in general be met on the 
Gram determinant curve, despite the considerable 
freedom in the choice of the a. This is shown in 
the Appendix. 

We briefly summarize the analysis applicable to 
single loops. The squares of the partial sums of the 
external momenta PI ... PE are dcnoted by 

Vij = (Pi + P,+I + ... + Pj-I)\ 

= 0, 

Then 
E 

i < j, 

i> j, 

i = j. 

(35) 

D = t L Vijaiaj - uC, (36) 
i. i=1 

where u = Li aim~ as before. We eliminate the 
il function in the integral (5) by replacing 

E-l 

an = 1 - L ai, 
i=l 

transform to homogeneous coordinatesl7 

i=l,···E-I, 

and consider 

D'(a', s) = S2 D(a). 

The conditions 

a D' ;aa~ = 0, ~ = 1, ... E - 1, 

yield after some manipulation the Gram determinant 
equation (1). However there is aD' / as which must 
also vanish. In fact it is found to be nonzero, being 
proportional to 1/;. Thus there will only be a singu­
larity if there is a net positive power of S in the 

17 Compare with footnote 16. 
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denominator of the integrand outside D', since then 
a pinch can occur between D' = 0 and t = 0 without 
requiring aD' I at = O. The condition for this is 
obtained from the power of the denominator in (4) 
and from the Jacobian. 17 It is 

E <n, (37) 

where n is the dimensionality of Lorentz space, 
as before. This result is in accord with the examples 
discussed in Sec. 3. 

The condition (37) is derived on the basis of II 

being unity in (2). This is not the case when fermions 
are involved nor when derivative interactions are 
introduced. In this case, since for example 

p = 1 + form linear in k 
vi" (2: a)v.r l 1/;" ' 

the effective power of D may be reduced. Thus the 
presence of spins may introduce second-type 
singularities which otherwise would be absent. 18 

7. MIXED SINGULARITIES 

For graphs that contain more than one loop, 
singularities may occur which correspond to some 
of the loop momenta being pinched at infinity and 
the remainder at finite points. We call such singu­
larities mixed second-type singularities. 

Their occurrence may be understood in the fol­
lowing way. A general graph G may be divided (in a 
number of ways) into two subgraphs GI and G2 • 

Let the Feynman function for GI be f. Then the 
Feynman function for G is equal to a multiple 
integral whose integrand is f mUltiplied by a propa­
gator for each line that is internal to G but not to GI • 

A mixed singUlarity of F occurs when a pure second­
type singularity of f pinches with the poles of the 
propagators. 

One may set up a graphical scheme, similar to 
dual diagram analysis, to obtain equations of the 
mixed singularity curves. The lines corresponding 
to the propagators above are put on the mass shell 
and the external vectors of the subgraph GI are 
drawn in the configuration appropriate to a pure 
second-type singUlarity for GI . There are also geo­
metrical constraints similar to those associated with 
Eq. (12). 

These ideas may be illustrated by the graph of 

18 That introduction of a numerator function can have an 
important effect on analyticity properties is well illustrated 
by the case of a gauge-invariant theory. Then the generalized 
Ward identity [V. Takahashi, Nuovo cimento 6, 371 (1957); 
K. Nishijima, Phys. Rev. 119, 485 (1960)] relates the vertex 
function to the propagator. The latter cannot have complex 
singularities and therefore also not the former, which is differ­
ent from the usual situation [reference 13 and P. V. Landshoff 
and S. B. Treiman, Nuovo cimento 19, 1249 (1961)]. 

"':t 
~ 

-7, -tie' 

R 

~ 
f'3 FIG. 2. A ~imple two-loop 

diagram. 

Fig. 2.18. The result of performing the k integration in 
the Feynman integral is 

F = f fCk,2) _ _ 1 
2' _ _1 2 dk' 

(P2 + k,)2 - ml (P3 - k') m~ , 

where f is the two-point function for the k loop. 
f has a pure second-type singularity when P vanishes 
and the mixed singularity of F arises from the 
additional conditions that the two internal momenta 
at the PI vertex be on the mass shell and coplanar 
with k. The resulting vector diagram is drawn in 
Fig. 3 and leads to the equation for the mixed-type 
solution. 

2m; (mi - z2)lm; - ZI = m; + mi - Z3 

± [em; + mi - ZY - 4m;m;f/2. 

It is not known what is the condition analogous to 
(37) for the actual presence of this singularity. 

The analysis of the mixed singularities in terms 
of the representations (2) or (5) presents some 
subtleties. This is because it turns out that all the 
a associated with the subgraph that is in the pure 
second-type configuration vanish. The general 
method is conveniently illustrated by a discussion of 
the specific example we have already considered. 

We transform some of the variables: 

k = kit, (38) 

and consider 

1/;' = N = tal[(P2 + k,)2 mil 

+ ta2[(PI - k,)2 - m;l 

+ {j3[(K - k't)2 - m~t2] + {j4(k2 - m!t2
]. (39) 

FIG. 3. A mixed singularity 
dual diagram. 

18. The existence of this mixed singularity has been 
explicitly verified by 1. T. Drummond. It has also been 
discussed by M. Fowler (private communications). 
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The Hadamard equations for a pinch when ~ = ° 
yield 

!3a + !34 = 0, 

K2 = 0, (40) 

U][(P2 + k,)2 - mi] + U2[(PI - k,)2 - m;] 

- 2{3aK·k' = 0. 

These equations do not suffice to determine a 
curve in z space. It is necessary, therefore, to seek 
the conditions that they be satisfied also at a 
neighboring point of the integration space. Thus 
we change incrementally the variables associated 
with the pure second-type singular sub graph and 
obtain: 

(0{33 + o!3.)K = {3a ofk', 

K ·(oK - o~k') = 0, 

k·ok = 0, 

k' . [(3a( oK - k' o~) + 0{33K] 

0, 

(PI - k,)2 m; 0; 

0· , 

'X 1(P2 + k') + U2(Pa - k') - (33K = 0. 

(41) 

(42) 

(43) 

Equations (42) are just the conditions stated 
above that the two internal vectors at the PI vertex 
be on the mass shell and (43) makes them coplanar 
with it Equations (40) and (41) together are those 
appropriate to a pure second-type singularity of 
the it loop. 

8. PHYSICAL SHEET PROPERTIES 

We now consider whether second-type singularities 
are to be found on the physical sheet. In particular 
we consider first the pure second-type singularity 
associated with three- and four-point functions. 

For definiteness, consider the four-point function. 
The existence of single vadable dispersion relations 
for this case shows that not all the second-type 
curve is singular on the physical sheet. According to 
previous analysis,lO·lI this is sufficient to ensure that 
none of the curve is singular on the physical sheet 
unless either 

(i) it has effective intersection with some other 
curve that is itself singular on the physical sheet 
or 

(ii) the curve contains either acnodes or cusps. 

The second possibility can be rejected for the 
pure second-type curve [Eq. (1)]. Also r, the pure 
second-type curve for scattering, cannot have 

effective intersection with normal or anomalous 
threshold curves since these are straight lines 
parallel to the s, t, or u axes whose position depends 
on the internal masses and so cannot in general 
touch r whose equation is independent of these 
masses. There remains the possibility that r has 
effective intersection with leading curves for four­
point graphs. However, we can assert that these 
curves are never singular at these intersections when 
approached along r. This is because r is the curve 
to which the invariants z would be confined if 
Lorentz space were two dimensional, and if space 
were two dimensional it would not be possible to 
draw dual diagrams for the leading curve of a 
scattering graph. 8

•
19 Hence one may conclude that 

the pure second-type curve for the four-point func­
tion is not singular on the physical sheet. A similar 
argument applies to the three-point function. 

A corollary of this argument is that starting from 
a nonsingular point of r and moving on r one cannot 
enter a sheet in which r is singular. This is of 
significance in connection with analytic properties 
of partial wave amplitudes since r is the boundary 
of the region of integration when the partial wave 
projection is made. 

The physical sheet properties of mixed singu­
larities can be discussed by the hierarchical type of 
argument lO employed for conventional Landau 
singularities. Acnodes and CUSpSll may be expected 
to occur in this case. 

9. CONCLUSION 

We have shown that perturbation theory, or any 
unitary theory,6 possesses a new and numerous class 
of singularities corresponding to solutions of the 
Landau equations with infinite momenta. A question 
that awaits analysis is the evaluation of the dis­
continuity across the cuts attached to these singu­
larities: the Cutkosky analysis5 does not seem 
directly applicable to this case.20 
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APPENDIX 

In this Appendix we wish to show that if; does not 
vanish for a single loop at a general point on the 
Gram determinant curve. The reason will be 
sufficiently illustrated by the particular example of 
Fig. 4 for the case of a triangular loop. 

The a's are determined by 

(al + a2 + aa)Y = 0, 

alex + M) + a2X + aa(x - M 3) 0, 
(AI) 

(x,~) 

(-M,o) (O,O) 

and is independent of x and y. 

FIG. 4. A diagram for 
constructing second­
type solutions for the 
triangle loop. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 4 JULY-AUGUST 1962 

On Forces and Interactions between Fields 

DAVE PANDRES, JR. 

The Martin Company, 
Denver, Colorado 

(Received December 9, 1961) 

After a discussion of certain properties of multi valued 
functions is given, these functions are used to give a scalar 
representation of electromagnetic theory. In this representa­
tion, the four-vector potential A appears as the four-gradient 
of a multivalued function cf>. The problem of solving the time­
dependent Schriidinger equation for a particle of charge e in an 
electromagnetic field is equivalent to the problem of solving 
the corresponding field-free equation in a space of multi valued 
functions ,!, which is connected to the space of single-valued 
functions f by the relation,! = Uf where U = exp (-iecf». 
Further, if L o('!, A) is the Lagrangian for a noninteracting 
particle field,! and photon field A, then Lo( Uf, A), regarded 
as a functional of f rather than '!. is the Lagrangian for 
interacting fields f and A. This suggests that other interactions 
(e.g., strong and weak interactions) should be introduced by 
using a transformation T which is more general than U. 

More fundamental reasons for believing that this is the 
case arise when one considers multivalued coordinate trans­
formations. It is shown that any curved Riemannian space 
may be connected with a flat space by a multi valued coordi­
nate transformation. This is possible because the metric 
transforms like a tensor under these transformations, but the 
RiE'mann curvature symbol does not. If one writes the 

I. INTRODUCTION 

T HE success of Einstein in geometrizing the 
gravitational field led him and others to search 

for a way to geometrize electromagnetism. However, 
no generally accepted theory has appeared, and it 

equations of motion of a free, classical, relativistic particle in 
flat-space coordinates and assumes that the equations 
transform covariantly under multivalued coordinate trans­
formations (this is a natural generalization of the equivalence 
principle), one obtains equations of motion in the curved­
space coordinates which describe a particle in a gravitational 
and electromagnetic field. Unfortunately, however, the 
electromagnetic field at any point of space-time depends on 
the four-velocity of the test particle at that point. This 
defect, together with the known existence of essentially 
quantum-mechanical forces and the fact that the uncertainty 
principle prevents one from measuring velocity when position 
is measured exactly, suggests that one should write the 
Klein-Gordon (or Dirac) equation for a free particle in 
flat-space coordinates, and then make a change of independent 
variables into curved-space coordinates. When this is done, it 
is seen that a corresponding change of dependent variable 
'! = Tf is required in order that the curved-space wave 
function shall be a single-valued function of the curved-space 
coordinates. The fully transformed equation describes a 
particle in a gravitational and electromagnetic field as well as 
certain other fields whose properties are not fully understood. 

now seems that the task of constructing a true 
unified field theory is more formidable than ever, 
since the strong and weak interactions would have 
to be included. 

There is a problem in quantum field theory which 
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variables into curved-space coordinates. When this is done, it 
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is analogous to the classical relativistic problem of 
constructing a unified field theory. This is the 
problem of finding general principles which determine 
the interactions between fields. Interactions are 
conventionally introduced by adding to the Lagrang­
ian Lo of the free uncoupled fields an interaction 
term Lr which must satisfy the requirements of 
hermiticity, relativistic invariance, and the limi­
tation that it contain no space-time derivatives of 
field quantities higher than the first. However, it is 
well known that these requirements are not generally 
sufficient to determine L1 • In this paper we give an 
argument which suggests another requirement that 
must be satisfied, and which displays the connection 
between the classical and the quantum mechanical 
problems in a rather direct way. The theory to be 
developed here depends upon the assumption that 
the equivalence principle should be generalized to 
include covariance under multivalued coordinate 
transformations. Since very little has appeared in 
the literature concerning multivalued functions, we 
begin by discussing some of their properties. 

II. PROPERTIES OF MULTIVALUED FUNCTIONS 

Let x be a vector whose Cartesian components 
are x', ... , X4 and let A be a vector whose Car­
tesian components are the single-valued functions 
A leX), ... , A.(x). We may define a function ¢ by 
the relation 

d¢ = Ai dXi. (1) 

In Eq. (1) and henceforth, we use the summation 
convention that a repeated lower case index is 
summed over the range 1 to 4. The usual point of 
view is that Eq. (1) is integrable [defines ¢(x) up 
to an arbitrary constant] only if A is conservative 
i.e., only if aAJaxi = aAJaxi. However, we 
adopt a more general point of view according to 
which we write from Eq. (1), 

¢(x) = r A(x') ·dx' + const, (2) 

where Xo is some fixed point in x space. If A is not 
conservative, ¢(x) may be regarded as a multi­
valued function whose value depends on the path 
taken from Xo to x. Consider the change in ¢ when 
x moves once around an arbitrary closed curve C. 
Clearly, we have 

(3) 

If we define an antisymmetric tensor Fi; (called the 
curl of A) by 

(4) 

then we have only to apply a 4-dimensional Stokes 
theorem! to Eq. (3) in order to obtain 

(5) 

where S is a two-parameter hypersurface bounded 
by C. The nature of the multivaluedness of ¢ is 
exhibited quite clearly by Eq. (5), which states that 
the change in ¢ that is produced by moving x 
around a closed curve equals the total flux of F i ; 

encircled by the curve. ¢ is single-valued only if Fi; 
vanishes. It follows from Eq. (1) that 

(6) 

i.e., that the gradient of ¢ is A. Thus, any vector 
field may be represented as the gradient of a scalar 
function, the function being multivalued if the 
vector field is nonconservative. 

It is clear from Eqs. (4) and (6) that 

(7) 

We see from Eq. (7) that if ¢ is a multivalued 
function of x then partial differentiation with respect 
to the components of x is not a commutative 
operation, although the commutators are well 
defined. This is one of the most important properties 
of multivalued functions. 

III. MULTIVALUED FUNCTIONS AND 
ELECTROMAGNETIC INTERACTIONS 

It is well known that an electromagnetic field is 
represented by an antisymmetric tensor F i ; which 
satisfies the Maxwell equations 

aFnk / axk = 47rjn 
(8) 

aFiJaX
k + aFkjax" + aF"k/aX i = o. 

Here jn denotes the nth component of the four­
current density j, and the velocity of light is taken 
as unity. We may use Eqs. (7) and (8) to obtain a 
scalar representation of electromagnetic theory 
which is quite different from that due to Wolf 2 and 
highly suggestive for further theoretical de~elop­
ments. We obtain 

a~k [a~n , a~k J¢ = 47rjn. (9) 

The second set of Eqs. (8) and the continuity 
equation ajnjaxn = 0 are automatically satisfied 

1 J. L. Synge and A. Schild, Tensor Calculus (University 
of Toronto Press, Toronto, Canada, 1956), p. 274. 

2 E. Wolf, Proc. Phys. Soc. (London) 74, 269 (1959). 
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because the four-gradient of ~ is single-valued. Thus, 
we see that to every multivalued function with a 
single-valued gradient there corresponds a unique 
electromagnetic field. Conversely, to every electro­
magnetic field there corresponds a multivalued 
function ~ which possesses a single-valued gradient 
and which is unique up to an arbitrary additive 
single-valued function. The gradient of ~ is the 
usual vector potential A which is fixe!i by Fii to 
within a gauge transformation (i.e., up to the 
gradient of a single-valued function). Thus, it is 
clear that we can introduce an electromagnetic 
field into a field-free equation by making a gauge 
transformation with a multivalued gauge function. 
This is quite straightforward classically, but deserves 
special attention in quantum mechanics. The point 
here is that if if; is a single-valued wave function 
and ~ represents an (nontrivial) electromagnetic 
field, then the unitary (gauge) transformation 
U = € -i.", is multivalued. Indeed, U is not an 
operator on a single Hilbert space. It maps the 
space of single-valued functions if; onto a space of 
multivalued functions 1/i = Uif;. Nevertheless, we 
may express the Schr6dinger equation for a particle 
in an external electromagnetic field in the form 

(10) 

where X4 denotes the time t and Ho is the field-free 
Hamiltonian for the system. If we transform Eq. 
(10) by U- 1 = U* = €i.", we obtain 

(11) 

where 

H - i ajax4 
= U-\Ho - i ajax4)u. 

Since U- 1 V U = V - ieA, it follows that H is 
the Hamiltonian for a particle of charge e in the 
electromagnetic field F ii . From a slightly different 
point of view, we see that the standard problem of 
solving the time-dependent Schr6dinger equation 
for a system in an external electromagnetic field is 
equivalent to that of solving the corresponding 
field-free equation, with the provision that the 
solutions shall be sought in a space of multivalued 
functions, the detailed character of which is fixed 
by the external field. In other words, Eq. (10) is 
equivalent to Eq. (11), but in an admissibility con­
dition representation. Bohm and Aharonov3 have 
noted the connection between Eqs. (10) and (11) 
for the special case where the fields vanish in some 
multiply connected region. 

3 Y. Aharonovand D. Bohm, Phys. Rev. 11S, 485 (1959). 

In quantum electrodynamics, the situation is 
similar to that descibed above. If Lo( 1/i, A) is the 
Lagrangian for a noninteracting particle field 1/i and 
photon field A, and we define 

L(if;, A) = Lo(Uif;, A), (12) 

then L is the Lagrangian for the coupled fields if; and 
A. This suggests strongly that other interactions 
(e.g., strong and weak interactions) should be 
introduced by using a transformation T which is 
more general than the multivalued gauge trans­
formation U. We shall see in Sec. V that there are 
further reasons for believing that this is the case. 

IV. MULTIVALUED COORDINATE 
TRANSFORMATIONS 

Let Oii(X) be a metric for some general Riemannian 
space-time. The element of length ds is then defined 
by 

(13) 

Now, let S;;(x) be a real and unitary (orthogonal) 
matrix which diagonalizes O. We have 

(14) 

with fi diagonal. The element fiNN is an eigenvalue of 
o corresponding to the eigenvector SNi' It follows 
from Eq. (14) that 

(15) 

We assume that x\ x2
, x3 are space-like, while 

X4 is time-like. It then follows from Eq. (15) that 

where 

and 

-1 0 

o -1 

o 
o 

o 
o 

o 0 -1 0 

o 0 0 +1 

d N 1- 1112 S d _i X = gNN Ni X. 

Upon solving Eq. (17) for dx i we obtain 

dxi = Ifinnl- 1I2 Sni dxn. 

(16) 

(17) 

(18) 

N ow, if we adopt the same point of view toward 
Eqs. (17) and (18) that we adopted toward Eq. (1), 
we see that these equations define a multivalued 
coordinate transformation. Consistent with this 
point of view we have 
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1
- 11/2 S 
g.VN lI,-i 

ax-ijaxN = 1- 1- 1/2 S gNX Ni 

and, we see that 

(19) 
in curved-space coordinates. These are easily found 
to be 

(24) 

(20) where (i k i I is the usual Christoffel symbol of the 
This second kind, and where o~ denotes the usual Kronecker symbol. 

means that we may use tensor methods to investi­
gate the relation between the x and the i systems 
even though the transformation may be multivalued. 
If we define g i i and g'; by 

(21) 

we see that gii and {iii transform like the con­
travariant components of a tensor while gi; and {iii 

transform like the covariant components of a tensor. 
For example, we have 

(22) 

Equation (22) shows that a curved-space metric 
and a flat-space metric are connected by a tensor 
transformation corresponding to a multivalued 
coordinate transformation. Now a well-known 
theorem due to Riemann states that it is not 
possible to connect a curved space and a flat space 
with a (single-valued) coordinate transformation. 
Since we have seen that this is possible with a 
multivalued coordinate transformation, we enquire 
just how the Riemann theorem breaks down. 
The answer is that when one takes the covariant 
derivative of a contravariant vector in the usual 
way, the object one obtains does not transform 
like a tensor under multivalued coordinate trans­
formation. Hence, the Riemann curvature symbol 
is not a tensor under these transformations. In 
particular, it may vanish in the x coordinate system 
but not in the i coordinate system if the two systems 
are connected by a multivalued transformation. 

V. TRANSFORMATION OF THE EQUATIONS OF 
MOTION OF A PARTICLE 

Consider the motion of a classical relativistic 
particle. The ideas of the general theory of relativity 
suggest that force terms appear in the equations of 
motion because of the curvature of space. This 
implies that the equations should be those of a free 
particle when expressed in terms of flat-space 
coordinates. We therefore write 

(23) 

We now seek the corresponding equations of motion 

(25) 

In passing from Eq. (23) to Eqs. (24) and (25) we 
have assumed that the equations transform covari­
antly under multivalued coordinate transformations. 
This is a natural generalization of the principle of 
equivalence, and we notice that it leads to results 
which are at variance with Einstein's assumption 
that particles move along geodesics. Eq. (24) defines 
a geodesic only if Fni vanishes, i.e., only if xa is a 
single-valued function of the i coordinates, so that 
the i space is flat. For nonvanishing Fni, Eq. (24) is 
the standard form for the equations of motion of a 
charged particle in a gravitational and electromag­
netic field. Since Eq. (23) is satisfied, it is clear that 
dxijds is constant along the trajectory, and we see 
that Fn; satisfies Maxwell's equations. Unfortunately, 
however, the dependence of Fni on dxijds is not in 
agreement with experiment. This is clear since the 
quantities dxijds determine, and are determined by, 
the quantities dxijds. Hence, Eq. (25) asserts that 
the electromagnetic field seen by a particle at any 
point of space-time is dependent upon the four-veloc­
ity of the particle. This result is unsatisfactory, but 
it does suggest that we should write down the 
quantum-mechanical equations of motion for a free 
relativistic particle in flat-space coordinates and then 
transform this equation into curved-space coordi­
nates. The reason this is suggested is that, in 
quantum mechanics, the uncertainty principle 
prevents us from measuring the four-velocity of a 
particle if we measure its position in space-time 
exactly. Hence we have some reason to hope that 
the curved-space equation will describe the motion 
of a particle in a gravitational and electromagnetic 
field, and that velocity dependent fields will not 
appear in quantum theory. There is a second reason 
to turn to quantum mechanics in the search for a 
unified field theory. A true unified field theory 
should account for strong and weak interactions as 
well as electromagnetic and gravitational inter­
actions, and the former appear to be essentially 
quantum mechanical in nature. 

The field-free Klein-Gordon equation in flat-space 
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coordinates is 
_gd a2if;/ax' a.1/ = m2if;, (26) 

while the field-free Dimc equation is 

(-iy" a/ax" + m)if; = 0 

y"y' + y'y" = 2g"'. (27) 

When Eqs. (26) and (27) are expressed in terms of 
curved-space coordinates they become 

_k" a
2
if; + _" a

2
xi ai

n 
aif; m2.1. 

- g aik ai" g ai' ai' axi ai7; = 'I' 
(28) 

and 
(-i-::/ a/aik + m)if; = 0 

(29) 

respectively. Now, there are terms in Eqs. (28) and 
(29) which may easily be associated with a gravita­
tional field, but there is no term which may be 
associated with an electromagnetic field. The reason 
for this (apparent) discrepancy with the classical 
case is that the transformed Dirac and Klein-Gordon 
equations exhibit a flaw which we must eliminate 
before proceeding further with the analysis. The 
point here is that if if; is a single-valued function 
of the x coordinates, then it is a multivalued function 
of the i coordinates. This may be seen from the 
identity 

[
a a ] ai

k 
ai" 

axi 'ax! if; = axi ax! 

[ a a ] .1. + a if; [a a J-n 
X aik

, ain 'I' ai" ax i , axi x (30) 

It is clear from Eq. (30) that [a/ax" a/axi]if; and 
[a/aik

, a/ain]if; cannot both vanish unless [a/ax" 
a/axi]in vanishes also. In other words if; cannot be 
a single-valued function of the x and x coordinates 
unless the coordinate transformation is single-valued. 
If the transformation is multivalued, the change of 
independent variables from x to x coordinates must 
be accompanied by a corresponding change of 
dependent variable from if; to ~,where ~ is a single­
valued function of the x coordinates. Thus, we 
write 

[a/ax', ajaxi]if; = 0 

[ajax\ a/axi]~ = 0 

if; = T~. 

(31) 

Equations (31) simply state that if; is a single-valued 
function of the x coordinate, that ~ is a single-valued 
function of the x coordinates, and that T is a (gener­
ally multivalued) transformation which connects the 

barred and the unbarred function spaces. It is clear 
that the transformation if; = T~ introduces fields 
in Eqs. (28) and (29) in much the same way as the 
transformation ~= Uif; introduced fields into Eq. 
(10). On the other hand, it is easily verified that 
Eqs. (31) cannot be satisfied by taking T to be 
simply multiplication by some multivalued scalar 
function. This means that although T may introduce 
electromagnetic fields into Eqs. (28) and (29) it must 
introduce other fields as well. The properties of these 
fields are defined by Eqs. (31), but the question is 
completely open whether they correspond to any 
forces which are observed in nature. Indeed, a 
rigorous analysis of Eqs. (31) probably would require 
the development of some new mathematical tools, 
capable of treating the calculus of multivalued 
operators. 

APPENDIX 

The following argument shows that although the 
function cp defined in Sec. II is "path dependent" 
rather than "multivalued" in the conventional 
sense, it can be expressed as a linear combination of 
conventional multivalued functions. In the interest 
of clarity the argument is given for a two-dimensional 
case. Let a vector A be defined by A = Axt£ + A.t.; 
where Az(x, y) and A.(x, y) are single-valued and 
t£, til are unit vectors in the x and y directions. Now, 
let B(x, y) = (aAy/ax - aAx/ay). It is well known 
that if B does not vanish, there is no (single-valued) 
function whose gradient is A. However, consider the 
function 

o = - B(x', V') arctan y - Y, dx' dy'. 1 foo foo , 
211" -00 _00 X - X 

It seems appropriate to call 0 a multivalued function 
since it is a linear combination of the arctan func­
tions. Upon computing ao/ax and ao/ay by differ­
entiation under the integral sign, we have 

ao 
a=-

I ax 

1 foo foo Y - y' d ' d ' = -- (')2 ( , 2 X Y 211" -00 -00 X - X + y - y ) 

_ ao _ -.l foo foo x - x' d ' d ' 
a y 

- ay - 211" _00 -00 (x _ X')2 + (y _ V')" x y 

Clearly, ax and au are single-valued, since they are 
linear combinations of single-valued functions. Now, 
consider the quantity 

aa y 
_ aax = [~ ~Jo 

ax ay ax 'ay . 
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We have hold for an arbitrary surface S, it follows that 

aa" _ aax = ~ foo foo B(x', y')[~ ,~Jt dx' dy' 
ax ay 21l" -00 -00 ax ay [:x ' :Jt = 21l" o(x - x', y - y') 

where f = arctan (y - y')/(x - x'). The change in and that 
f(x, y) which results from moving in a counter 
clockwise direction around a closed curve C in the aa y 

_ aax 

x, y plane is 

J (at at) llf = - dx + - dy , 
c ax ay 

and by Stoke's theorem 

llf = Is [:x ' :Jt dx dy, 

where S is a surface bounded by C. Now, I::;.f equals 21l" 
or zero according as C does or does not encircle the 
point x', y', i.e., according as that point does or 
does not lie on S. Hence, we may write 

Is [:x ' :Jt dx dy 

21l" Is o(x - x', y - y') dx dy, 

where o(x - x', y - y') is the usual two-dimensional 
Dirac delta function. Since the above relation must 

ax ay 

= Loooo Loooo B(x', y') o(x - x', y - y') dx' dy' 

= B(x, y). 

It is now clear that if cp is defined as in Eq. (2), then 
A = Vcp and a = V(J are vector potentials corre­
sponding to the same fields. Hence, they can differ 
only by a gauge transformation, i.e., by the gradient 
of a single-valued scalar. This means that (J and cp 
differ only by a function which is single-valued. 
Since (J is a superposition of (conventional) multi­
valued functions, it seems appropriate to call cp a 
multi valued function also. In conclusion, it should 
be emphasized that derivatives of cp are defined by 
giving the path of integration a slight increment 
at its end point while holding the rest of it com­
pletely fixed. 
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. The ~ehavi?r of the ~ean valu~ of. the energy-m~me~tu~ tensor of a set of quantized matter fields 
~tera~tillg Wlt~ a cla:s~lCal gravlt~tIOnal field whICh IS, ill turn. produced by this mean value, is 
illvestl~ated. Smgulantles appear m the energy-momentum tensor corresponding to divergences of 
three dIfferent orders: 00 4, 00', and log 00. These can be removed by the introduction of counter terms 
into Einstein's. eq~ation. The 004.sin~larity is removed by a "cosmological term," the 00' singularity 
by a renormahzatlOn of the graVItatIOn constant, and the log 00 singularity by a counter term deriv­
able from a Lagrangian which is quadratic in the Riemann tensor. 
Th~ gravitation.al Green's function correspon~ing to t~is semiclassical approximation to the fully 

quantized theoI?' IS fo~md. to have the .asymptotlC behaVIOr 1/p4 instead of lip', and thus to have a 
much weaker smgulanty m the coordmate representation than the Green's function of the "bare" 
linearized theory. 

INTRODUCTION 

I N a previous paper l it was shown that the con­
ventional renonnalization procedures of quantum 

electrodynamics suffice also to remove the singular­
ities in the photon and electron Green's functions 
in a given classical gravitational field. Furthermore 
the renormalization constants were shown to be 
identical with those of the Lorentz invariant theory. 

As the next step towards the quantum theory of 
gravitation, we shall consider in the present paper the 
case in which the gravitational field is not an 
arbitrarily given c-number field but is regarded as 
being produced by an appropriate matrix element 
of the energy-momentum density of quantized 
matter fields. 2 Kow, a classical gravitational field 
can induce a nonvanishing energy-momentum den­
sity (which actually diverges) in the vacuum state.3

•
4 

In the present approximation this phenomenon gives 
rise to closed-loop Feynman diagrams which lead to 
a new type of divergence. characteristic of gravi­
tational interactions. 

Strictly speaking, this divergence also occurs in 
I, if one actually calculates the vacuum expectation 

* This research was supported in part by the Department 
of the Navy, Office of Naval Research, under contract Nonr-
855(07) and in part by the Air Force Office of Scientific Re­
search under contract AFOSR 61-72. 

t On leave of absence from Osaka University, Osaka, 
Japan. 

1 Ryoyu Utiyama, Phys. Rev. 125, 1727 (1962). This 
work will be referred to as 1. 

.2 The term "matter field" here means not only the con­
ventional matter fields, such as those describing electrons and 
mesons, but also includes the radiation field. 

3 Bryce S. DeWitt, Ph.D. Thesis, Harvard (1950). 
4 Here the "vacuum" means a state where neither material 

particles nor photons are present. 

value of the S matrix. However, in the definition of 
the Green's functions, which are discussed in I, such 
a divergence appears as a factor in both numerator 
and denominator and consequently cancels out. 

In the present paper, quantities depending on 
the gravitational potential (especially the expecta­
tion value of the energy-momentum density) are 
expanded in power series in the gravitation con­
stant ~. Each term of such a series corresponds to 
a Feynman diagram which, in the case of the energy­
momentum density, consists of a loop of internal 
matter lines yielding divergences of three different 
types: ro 4, ro 2, and log ro. The most singular part 
of the series, each term of which is proportional to 
ro 4, can be reduced to a simple expression removable 
by a counter term in the Lagrangian analogous to 
the "cosmological-term" of general relativity, with 
an infinite coefficient. Furthermore, by employing 
the methods of I, it will be shown that the singular 
part proportional to ro 2 can be removed by re­
normalizing the gravitation constant. The singular 
part proportional to log ro, on the other hand, can 
be handled only by introducing counter terms of a 
completely new type. 

The infinite constants appearing in the counter 
terms corresponding to the ro 2 and log ro divergences 
are new ones. They are characteristic of the gravita­
tional interaction and are not encountered in 
Lorentz invariant field theories. 

1. PRELIMINARY DISCUSSION 

In order to develop a quantum theory of matter 
fields interacting with a c-number gravitational field, 

608 
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it will be sufficient to postulate 

(1) A system of coordinates x#(fJ. = 1, 2, 3, 4) 
can be established for which every hyper­
surface X4 = constant is everywhere space­
like. 

This postulate enables one to set up canonical 
commutation relations for the operators of the 
matter fields. In addition, for local field theories , 
one can define a state vector as a functional of field 
variables at any time x\ and the total energy­
momentum operators will act as generators of 
infinitesimal displacements even though these 
operators are not constants of the motion. 

If in addition to (1) we also postulate 

(2) The interaction constants between matter 
fields adiabatically vanish as X4 ~ ± ro in 
the system of coordinates introduced in (1), 

then we may introduce the so-called interaction 
picture.5 

It should be noted that in dealing with questions 
of general covariance it suffices to restrict our 
attention to coordinate transformations which 
maintain the conditions of postulate (1). 

The state vector in the interaction picture is a 
functional on any space-like surface (J", and the 
functional dependence of the state vector upon (J" is 
governed by the Tomonaga-Schwinger equation. 
The formal integration of this equation gives us 
the S matrix, the derivation of which needs postulate 
(1). 

In order that it be possible to introduce a com­
plete set of orthonormal vectors in the Hilbert space 
at X4 = - ro, it is convenient (although perhaps 
unnecessary) to require, in addition to postulates 
(1) and (2), condition: 

lim g., = 71.,. (3) 
x"--+-oo 

Postulates (2) and (3) together allow us to employ 
the conventional incoming-field-representation in 
terms of which every field operator in the Heisenberg 
picture can be represented by means of the so-called 
U(x\ - ro) matrix. 

All the above requirements can be satisfied if 
the gravitational field is sufficiently well behaved. 
In the present case, however, since the gravitational 
field is regarded as being produced by the matter 
fields according to Einstein's equation, one must 
investigate its behavior a posteriori in order to 
check consistency. 

. • In ~his case the free Ha~iltonian does not involve any 
mteractlOn between matter fields. The interaction of each 
field with the gravitational field, however, remains. 

Of course, it is very hard to give more than a 
qualitative criterion for the validity of the postu­
lates. Roughly speaking, however, if the deviation 
Ig.,(x) - 71.,1 is smaller than unity everywhere in 
the "world," it is reasonable to regard all the 
postulates as being satisfied. Accordingly, one must 
first of all remove the singularities of the energy­
~omentum tensor. Otherwise this tensor will give 
rIse to a very large deviation of g., from the Minkow­
skian metric 71.,. 

When the removal of divergences of the energy­
momentum tensor has been performed, the gravita­
tional effect of one electron may be regarded as that 
due to a mass m spread over region of dimension 
A = h/mc. This produces a deviation of the metric 
from flatness of order 

t:.g., = Gm
2 /1ic = 0.3 X 10-45 «< 1 , 

where G is the gravitation constant. 
Consequently, we may reasonably assume that 

all the postulates are satisfied and proceed to 
apply conventional methods of quantum field theory 
to the present case. The self consistency of this 
procedure will then be verified at the end. 

2. FIELD EQUATIONS 

Our first problem is to replace the classical 
energy-momentum tensor of the matter field, which 
appears in Einstein's equation, by a suitably 
defined mean value of the corresponding operator. 

The most straightforward way is to adopt the 
simple expectation value. However, if one applies 
Schwinger's method to the quantized Einstein 
equation in order to obtain the fundamental equation 
for the Green's functions of the q-number gravita­
tional field, one is led to adopt the following mean 
value: 

(\(r!S· 'l'j;(X)'¥b)/('¥~S'¥b) 

where '1'0 and '¥b are two state vectors belonging to 
the Hilbert space established at X4 = - ro T·'(x) 
. h ' H 
IS t e q-number energy-momentum tensor of the 
matter fields in the Heisenberg picture, and S is 
the S matrix which is assumed to exist in virtue of 
the postulates mentioned in Sec. 1. 

In the present section we shall be exclusively 
concerned with the special, but important, case 
'fF" = 'fFb = 'fFo (the vacuum state at x' - ro) 

(T.'(x» == C'fF~S· T·;Cx),¥o) 
('fF~S'¥o) 

which can be alternatively written as 

= {'¥~, T[S ·T·'(x)]'fFol 
C'fF~S'fFn) 

(2.1) 
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the symbol T denoting the T product which can be 
well defined in virtue of postulate (1). Thp T"'(x) in 
the alternative expression is taken in the interaction 
picture. 

The more general case, where Wb and wa are 
arbitrarily chosen initial and final states, will be 
discussed briefly in the final section. It will be 
seen, however, that the analysis of the special 
value (T"') taken here is sufficient for the discussion 
of the removal of divergences appearing in T"J;, 
which is the main purpose of the present paper. 

Our starting equation is 

(_g)1/2(W' - (1/2)gP''R) 

= _K[_g(x)]1/2(Ta,(x», 

where 

R", = a"r,/ - apr"/ + r"/r,/ - rp/rp,\ 
R = g"'R"" 
K = Einstein's gravitational constant. 

(2.2) 

Equation (2.2) can be derived by the variation 
principle from the action integral 

I = J (_g) 1/2L d4x 

L = (l/2K)R + (L M ), 

where the following abbreviations have been 
employed: 

a
p 

= TIP' a" 

s"' = 2( - g) 1I2(T" ,(x» + (2/K)0".(i) 

o",(i) = (- g) 1 12(R., - (l/2)o",R) - 42 
[left-hand side of (2.3)] 

= order of i 

On the right-hand side of (2.3) an additional term 
tp , has been introduced for the sake of convenience. 
It is assumed to be a well-behaved tensor density 
satisfying the conservation law 

(2.4) 

Because of (2.4), t",(x) cannot be independent of 
0." and must be represented by a power series in K. 

The divergence of the left-hand side of (2.3) 
vanishes identically. Consequently we have 

a"(s", + tp ,) = 0, (2.5) 

when (2.3) itself is satisfied. 
The left-hand side of (2.3) can be rewritten in 

the simpler form 

where (LM(X» stands for the mean value of the Oh", = - (S", + t",) , (2.6) 

Lagrange function of the matter fields, which is if we introduce a new field quantity defined by 
assumed to be a scalar under the general coordinate 
transformations. The symmetric energy-momentum hp , = q,", - (l/2h",q" 
tensor T·J;(x) is obtained from LM in the following satisfying the subsidiary condition 
manner: 

Let us now put 

g",(x) 

g"'(x) 

Tip, + Kq,",(X) 

TI"' - Kq,"'(X) + 
Following the argument given in Sec. 1, we assume 

the deviation /Kq,p,(X)/ to be smaller than unity 
(at least when the singularity of (T·') has been 
removed) even in the vicinity of matter particles. 
We also assume the convergence of the expansion 
of any quantity depending on op, in powers of K. 

Equation (2.2) becomes in such an expansion 

a" a,q, + Oq,", - a. apq,p, - a, apq,p. - TI.,Oq, 

+ TI", a' a"cj>," = - S",(x) - t",(x) , (2.3) 

a"h., = 0. (2.7) 

It is easily seen that condition (2.7) is compatible 
with the field equation (2.6) when (2.5) is satisfied. 

The formal solution of (2.6) is 

h",(x) = hZv(x) + J .1(x - x') ! S"v(x') + t"v(x') I dx', 

where 

Oh~, = 0, 

and .1(x - x') is defined by 

o .1 (x - x') = - o'(x - x') 

together with appropriate boundary conditions. The 
above solution for h leads to 

q,.v = q,Z,(x) + a;A,(x) + avA.(x) 

+ J ~(x - x')! S.,(x') + t.,(x') 

- (1/2h.vS(x') - (I/2h.vt(x') I d4x', (2.8) 
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where A,(X) is an arbitrary covariant four-vector 
(under Lorentz transformations) and Sand tare 
defined as 

The terms involving A~(X) in (2.8) give zero when 
inserted into the left-hand side of (2.3). The 
ambiguity in cfJ~, due to the arbitrary functions A~ 
reflects the invariance of the theory under general 
coordinate transformations. 

Since the gravitational field is expected to vanish 
in the absence of the source t"' (when the infinities 
appearing in the vacuum expectation value (T~') 

have been subtracted), cfJ~,(x) in (2.8) should be 
put equal to zero. In addition, the terms involving 
A~ can be removed by a suitable transformation of 
the coordinate system. 

Therefore, our basic equation is now 

cfJ~,(x) = f ~(x - x') {M",(x' ) + N",(x' ) l d'x, 

M~, = S~, - (1/2)7)~,S, 

N~, = t", - (1/2)7)",t. (2.9) 

Here the quantities M and N are functionals of cfJ 
and can be expanded in power serietl in K in the 
following way: 

M = Mo + K f M,cfJ + ~~ II M 2# + 

N = No + K f N1cfJ + ~~ II N 2# + ... 

where tensor indices and integration variables have 
been suppressed for compactness. 

Inserting these expansions into (2.9) and iterating, 
we obtain the solution of (2.9) as a power series in 
K, the first few terms of which are pictorially repre­
sented in Fig. l. 

In contrast to the case of full quantization of 
the gravitational field there occur in Fig. 1 no closed 
loops of dotted lines (which will be called internal 
gravitational lines or g lines). Consequently cfJ", 
becomes finite if all the Mn's (n ~ 1) are finite and 
M 0 is equal to zero. (Since M 0 is independent of x, 
as will be seen later, the integration with respect 
to x diverges unless Mo = 0.) Furthermore, if the 
external source t' vanishes cfJ", becomes zero as 
was expected. 

Mathematical quantity Corresponding figure 

.") ~ L-·_-O 
.6!x-y) ...-+ ~ ________ i' 

Mn ~ _~( 
"""~, 

~-.-.-o' ,--------<§) • L ______ -@ 

.---@ + .----@ 

+._--@---@ + .----@----@ + .---@----@ •. ---@----@ 

+.---@---@----@ + .--@---@---@ + .--@---@---@ 

+.---@---@----@ + .--@---@---@ + .--@---@---@ 

+---@---@---@ +--@---®--~ 

/)@ /A!9 ,'is) 
+----@: + 2 -----e: + -----@:. 

"'@ "'@ "'@ 

,~ ,8 ,8 
+----@:' + 2 .----@:' + .----&' 

"'@ "'e "'@ 

FIG. 1. Feynman diagram of tP",(X). 

As an example, let us consider the pure radiation 
field in the absence of electric charges; i.e., 

which gives 

(T"'(x» = -<raf;) - g"'(LM) 

= lim [_g~p(x)ga'gv~(ap 0; - a. o~)(a~ o~ - a~ op) 
x'-x 

X ~h,(x, x'} (3.1) 

Sx,(x, x') = (AxCx) , A,(X'». 

The most interesting property of (3.1) is the fact 
that its trace vanishes; 

g~,(T~'(x» == O. (3.2) 

This identity can be used to reduce the number of 
counter terms needed for the removal of the singu­
larities appearing in (3.1). 

More generally (T~') has the typical structure 

(T"'(x» = lim L D~:)(g(x), a, a')G(n)(x, x'), (3.3) 
x'-x n 

where D(n) involves g~.(x), agjax, a/ax, and a/ax' in 
a certain order and G.J.n) is the Green's function for 
the nth matter field in the presence of the gravita­
tional field. This general form holds for fermion as 
well as boson fields and is maintained also in the 
presence of interactions between these fields provided 3. GENERAL PROPERTIES OF (T~') 

Before beginning the .detailed investigation 
(T"'), it is useful to give a concrete expression 
(T~') in a special case: 

of the G(n) are then understood as generalized prop a­
of gators. 

Let us suppose that the Green's function for the 
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Q¢(Yn) 

\. 

FIG. 2. Diagram of an. 

nth field satisfies the equation 

F(n)G(n)(x, x') = o(x - x') n = 1,2, ... N, 

where F(n) is a certain differential operator of, say 
the ath order. In addition, let us assume that all 
the singularities due to mutual interactions have 
been removed from the G(n), by a suitable renormali­
zation technique. Then, in momentum space the 
Fourier transform of G(n) has the following asymp­
totic behavior: 

for p; p' »mass of particles. 

The degree of the highest derivative appearing 
in the differential operator D(n) in (3.3) is closely 
related to that involved in F(n), owing to the special 
character of the gravitational interaction. Namely, 
D(n) behaves asymptotically in the momentum 
representation like 

D(n) ~ O(p"). 

Therefore a very rough estimate leads to the 
following result in momentum space 

(T"'(x» '" L J D1n)(p)G(n)(P) d4p 
(3.3a) 

'" L J O(p") ·O(p-a) d4p = ro 4 

regardless of the properties of individual matter 
fields. 

Let us expand (_g)1/2 (T"'(x» in a power series 
in K: 

x [ILV, p,er" ... Pnern; X - y, x - Y'2, '" x - y,,] 

n " 

II CPPiU,(yJ II d 4
yj, 

1=1 j=l 

with ao[w] = limK~o (_g)I/2 (T"'(x» = A7]"' where 
the quantity an [ ... J is a contravariant tensor of the 

2n + 2th rank under Lorentz transformations whose 
tensor indices are indicated in the square brackets. 

As is easily seen (cL I), an can be represented 
by a diagram of the form shown in Fig. 2. The lines 
(XY1), (Y1Y2), ... (YnX) correspond to Green's 
functions of the matter fields, including the effect 
of their mutual interactions, but excluding the 
effect of the gravitational field itself. 

The functions an are to some extent restricted by 
relations stemming from the transformation char­
acter of (TP

') under general coordinate transforma­
tions and from the law of conservation of energy­
momentum. Thus, under 

x" ~ x'" = .1:" + ~Kt(X), 
we have 

K( - g)'/2(TP') ap~"(x) + ('1'"P) ap( - ('1'"') ap~PI 

= -J o[(-gr/
2

(T"'(x»] Ja ~ ( ) 
ocppu(Y) l p u V 

and 

+ au~p(y) + K al'(Y) 'CPAU(!J) 

+ K au~\!J) 'CPAP(!J) + K~A(!J)' a;..cppu(Y) I d4
y 

+ Ke(X) ap{(-g)'!2(T"'(x»l (3.4) 

ap {(_g)I/2(TP'») + r;u(_g)1/2(TPU) = O. (3.5) 

It is to be noted that in general (T P
') is a functional 

of cP and tP
'. It will be seen, however, that the Green's 

functions of the matter fields depend only upon cP, 
and since the effect of the external source t is 
mediated by cP, it is unnecessary to take account of 
the variation of tP

', the latter being already contained 
in the variation of cp. 

The expansion of (3.4) and (3.5) in power series 
in K yields the recurrence formulas 

ao[pv] ap~"(x) + ao[ILP] apnx) 

- ao[lLv] ap~p(x) = e(x)(a/axP)ao[lLv] 

- J a,[lLv, per; x - y]{ap~u(Y) + auUY) I d4y, (:3.6) 

etc., 

and 

~ J a,[w, per, x - !J]cppu(!J) d'y 
ax 

+ (l/2)ao[per]7]''eaUCPAP + apCPUA - a)..cppu) = 0, etc. 
(3.7) 

Since aoLuvJ is independent of the coordinate x 
[as is easily seen from graphical considerations], 
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(3.6) can be rewritten in the simpler form 

A [7J~u a' + 7J'u a~ - 7J~' a1 o(x - y) 

= -2(a/aXP)a,[llll, prr, x - y], 

where ao[,uv] has been put as 

ao[llll] = A7J~' = lim (_g)'/2<T~'(x», 
K~O 

(A. = const). 

In a similar manner (3.7) becomes 

2(a/aX~)a'[llll, prr; x - y] 

(3.6') 

(3.8) 

+ A[7]'P aU + 7J'u ap 
- 7J Pu a'] o(x - y) = O. (3.7') 

Equations (3.6') and (3.7') will later play an 
important role in the segregation of the singular 
parts of (_g)'/2 (T~'>. 

4. SEPARATION OF DIVERGENCES FROM (T~'> 

As has already been pointed out, it is necessary 
to remove singularities from the Mn's in order to 
obtain a finite solution of cf>~ •. The definition (2.9) 
and the definition of S~. show that the singularity 
of Mn arises solely from (T~'> because the quantity 
O~,(l) involved in S~, is a sum of products of cf> 

and its derivatives and gives no trouble if cf> is finite. 
Following the conventional approach, let us con­

sider the momentum representation of ( - g) 1/2 (T~'>: 

( - g)'/2(T"'(x) > = ~l - J 'J"'(p)eiPx d4p 
. (2'lTl 

cf>p,(x) = (2~)2 J cf>~,(k)eikx d4
k 

= (2;)2" J b,,[llll, Plrrl, ... Pnrr,,; qlq ... qn] 

X exp [i t, q,Zi] g d4
qi (n ~ 1), 

and 

'J"'(P) (2rr)2 ~ ~~ J {p - t Pi] 
X b,,[llll, p,rrl, ... p"O",,; PI, P2, ... p,,] 

n 

X II cf>p;u/Pi) dpi' (4.1) 
i=l 

The quantity bn in (4.1) is represented by the 
diagram shown in Fig. 3 and diverges like 0) 4 

regardless of the number of g lines. 
The singular part of bn can be defined as follows: 

FIG. 3. Diagram of b". 

(n ~ 1), 

and 

where 

Cn.Ciihk) 

== a
4
bn / apCi) a' ap(i)~' apChh . apCk) 0.11 "-0 = O(log 0). 

The quantity 

is finite provided all the singularities involved in 
Green's functions of the matter fields, due to the 
mutual interactions, have been removed beforehand 
by a suitable subtraction technique. 

The singular coefficients A, B, and C are sums 
of products of 7J~'. The terms which are cubic and 
linear in P do not appear in singb" because there 
exist no constant tensors of odd rank. 

The singular parts of (T~'> must by themselves 
satisfy the relations (3.4) and (3.5). This then allows 
us to obtain concrete expressions for all the singbn's 
(n ~ 2) in terms of singbo and singb,. 

We introduce the following notation: 

aing
{ ( _ g)!(T"') I = .ing 'J~;(x) 

+ sing 'J";(X) + sing 'J"~(X), 
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where 

Sing3~;(p) = (2!/ J e- iPI sing3~;(x) dx 

= (271l ~ ~; J {p - ~ Pi J An[JlP, PI ... O'n] 

n 

X II c!>Pi"JpJ d
4

p" (4.2) 
j=1 

etc . 

• ing3~; (x) is a tensor density under general coordi­
nate transformations and satisfies the conservation 
law (3.5). Since 

sides, we find 

A1[MV, pO'J 

= (A/2(2'lIy)[7]~'7]P" - r/"r/" - 7]'P7]~"] 

PpBI[/loV, PO', aj3]Papfi = O}, 
P~BI[/loV, PO', aj3]Papfi - 0 

ppCI[MV, PO', aj3'Y O]PaPfiP~P' = O} 
p~Ct[/loV, PeT, aj3'Y o]PaP~P'lP' = 0, 

(4.9) 

(4.10) 

(4.11) 

The expression of Al given by (4.9) agrees with 
that derived from (4.4), whereas Eqs. (4.10) and 
(4.11) have the general solutions 

lim 8ing3~;(x) = A7]~' = lim [(_g)1/2(T~'(x»J, (4.3) (I/2!)B1[/lov, PeT, aj3]Papfi = (B/2(2'1I'Y)[p2{7]"'7]p" 

it therefore follows that in general 

8ing3";(x) = A(_g)1/2g"'(X), (4.4) 

where the infinite constant can be calculated from 
the expression 

lim (_g)1I2(T"'(x» = A7]~'. 

Similar considerations may be applied to the 
determination of 8ing3B and sing3c. We have 

X LMV, PO', af3]c!>p"(p') d
4
p' 

= «271")2/2!)PaPfiBl~V, PeT, a{3]c!>p"(p), (4.5) 

and 

lim! •ing3";(p) 
K-O K 

We now note that the general structure of the 
coefficients BI and C1 is completely determined by 
relations (3.6') and (3.7'), which, in the momentum 
representation, take the forms 

A[7]""p' + 7]'"p" - 7]"'p"] = -2(271")2pp {A1[MV, PO'] 

+ (1/2!)PaP~1[/loV, PO', af3] 

and 

2(271")2p"{A 1 [MV, PeT] + (1/2!)PaP~I[MV, PeT, af3] 

+ (1/4!)PaPfiP'lp,C1[Mv, PO', af3'Yo] I 

(4.7) 

+ A {7]'Pp" + 7]'"pP - 7]P"p'l = O. (4.8) 

Comparing terms of equal order in P on hoth 

- (1/2)(7]"P7]'" + 7]~"7]'P) I 
- (p"p'7]P" + pPp"7]"') + (l/2)(p"pP7]" 

+ p~p"7]'P + p'pP7]"" + p'p"7]"P)], (4.12) 

and 

(l/4!)C1 [MV, PeT, af3'Y o]PaPPP'lP' 

= (2C/(271")2)[P2{7]"'7]P"p2 - p"p'7]P" 

- pPp"7]~'1 + p"p'pPp"] 

+ (D/(271")2)[(p2)2(7]"P7]'" + 7]~"7]'P) 

+ p'p" 7]"P) + 2p"p'pPp"]. (4.13) 

Explicit expressions for the infinite constants B, C, 
and D may be obtained directly from bl[/lov, PeT, p] 
by the method of regulators. 

Substituting (4.12) and (4.13) into (4.5) and 
(4.6), we get 

X [7]"' Dc!> - Oc!>"' - a" a'¢ - 7]"' aP a"c!>p" 

+ a" ap¢p, + 0' op¢P"], (4.14) 

lim [1/K sin~3";(x)] = 2C[1]"' 02¢ - oa" a'¢ 

- 1]"' OoP a" ¢P" + 0" 0' oP 0" ¢P"J 

+ 2D[o2cf>'" - Do" opqf' 

- oa' op¢P" + 0" 0' oP a"c!>p"]. 

Consider now the following invariants: 

(4.1 :i) 
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and 

I J ( )'!2R"h'R d4 z = -ga~~D x. 

The variational derivatives of these invariants with 
respect to g., are readily found to be 

01 0/ og.,(x) 

_(_g)'!2(R"' _ (I/2)g"'R) == _(_g)'!2G(0/' 

(K/2) [17·' Ocp - Ocp"' - a" a' cp - 17·' aP a" CPP" 

This renormalization leaves 9 P' unchanged: 

In place of the original action integral in Sec. 2, 
let us now introduce6

•
7 

(5.2) 

where a, (3, and 'Yare indeterminate constants and 

+ a' apcp"· + a· apcpP'] + o(l) , 

01,/ og.,(x) ~ (- g(x))'!2G~;)(x) 

= 2K[17"'02cp - 17"'oa
p 

a"cpp" 

- d" d'Ocp + a· a' dP a"cpp"] + O(l) , 

01 2 /og.,(x) ~ (-g)'!2G~;)(x) 

Applying next the transformation (5.1) and keeping 
in mind that all the 1 ,,'s (a = 0, 1, 2, 3 and 111) 

(4.17) are left unchanged thereby, we have 

= 2K[ 0 2cp.' + a· a' ap a"cpp" 

- oa· apcpP' - oa' apcpPp] + o(l). (4.18) 

1 = (Z/2K')n + aI; + {3I~ + 'YI~ + l'u, 

where 

1~ == 1,,[g., = 17 + K'cp~,]. 

(5.2') 

Since the 1 a (a = 0, 1, 2) are invariant under The action (5.2') leads to the new Einstein equation 

general coordinate transformations, we have the -2K'(01/ og~v)/( _ g,)'/2 
identities 

a.[( - g)'/2G~:)] + r;"( - g)1/2G~:) == 0 

(a = 0, 1,2). (4.19) 

By comparing (4.14) and (4.15) with (4.16), 
(4.17), and (4.18) we are therefore enabled to infer, 
to all orders of K, 

sin"3P;(x) = B( - g)'!2Gnx) 

= B( - g) l!\R·' - 1/2g"'R) , (4.20) 

,in"3P;(:1') = {CG~:)(x) + DG~;)(x)j(-g)'/2. (4.21) 

Thus we arrive at the final expression 

(T·'(x) = Ag"'(x) + BG~~) 
(4.22) 

where A(= 00
4
), B(= 00

2
), C(= log 00), and 

D( = log 00) are constants the precise "values" of 
which depend on the number and character of the 
matter fields which have been included. 

5. REMOVAL OF THE SINGULARITIES OF <TP') 

Consider the following renormalization of K and 

CPP' : 

K --+ K'= ZK, 
(5.1) 

CPP' --+ cp~, = Z-Jcpp,. 

+ K'(TP'(x, g') = O. (5.3) 

Since the arguments of Sec. 4 which led to the 
conclusion (4.22), remain unchanged in the primed 
system, the quantity (T·'(x, g') == (T'·') retains 
the features of (4.22). 

The new field equation may therefore be written 
in the form 

+ K'(A - 'Y)g'P' + (K'B + Z - I)Gj~; 

+ K'(C - 2a)G~~; + K'(D - 2(3)G;~; = 0, 

6 At the meeting of the American Physical Society in New 
York in January of 1961, Professor Feynman gave a talk in 
which he introduced similar counter terms into Einstein's 
equation. 

7 There is a linear relation 

where 

GP' - ~- J (- ') 1I2R 2 d4 
(I) - 0 9 x. 

g", 
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FIG. 4. Diagram corre­
sponding to a typical term 
of the functional series for 
"'v' (x). The dotted lines cor­
respond to the to function. 

where A, B, C, and D are the infinite constants 
previously introduced. If we now choose Z, a, j3, and 
'Y as follows: 

Z = 1 - ,/j3, 

a = C/2, 

j3 = D/2, 

'Y = A, 

then we obtain the equation 

(5.4) 

momentum tensor satisfies certain algebraic iden­
tities. 

As an example,3 consider the pure electromagnetic 
field. In this case the relation 

g.,(T·') == 0 

is well known. In order that finite(T·') separately 
satisfy this relation, it is necessary to postulate 

sing(T"') = 0 g., , 

which leads to the following relations ill the mo­
mentum representation: 

7]., singbo[J.lp] = 4A = 0 

7]., '
ingb1 [J.lp, pu, p] + ¢",(p) .ingbo[J.lp] = O. 

These relations in turn yield 

A = 0 B=O D = -3C, (6.1) 

whence 

G~"' == R'·' - tg'·'R' = -K' finite(T'·'(x», (5.5) Z = 1 a = C/2 j3 = -3C/2 = -3a 'Y = O. 

or, more generally, 

R'"' 1 '·'R' - , f in"e(T'·'( » t"' - "2g - -K X - , 

Therefore in this case only one renormalization 
(5.5') constant is necessary. 

which is free of singularities. 
Recalling the definition of M 0 introduced in Sec. 

2, and taking account of (4.3), we see now that 

Mo = O. 

Consequently, ¢;. can be written as a functional 
series in the external source t·' starting with the 
linear term. 

It is obvious that any term in this series can be 
represented by a tree-like diagram similar to the 
one shown in Fig. 4. 

It will be noted that at the end of every branch 
of the tree tr appears, where 

at~'(x)/ax" = O. 

Accordingly the gravitational potentials vanish 
in the special coordinate system chosen in this 
paper if the external source t"' vanishes. 

6. DISCUSSION 

(A) Simple example of singe _g)1/2(T"') 

We have seen that in general four independent 
counter terms are needed for the removal of singu­
larities appearing in (_g)1/2 (T"'). Sometimes, how­
ever, this number is reduced if the original energy-

(B) Specification of A 

The A function introduced in Sec. 2 becomes well 
defined when a definite boundary condition is 
selected. In Sec. 1 we postulated, for the sake of 
convenience, that 

lim 0., ~ 7]"" 
x"'_- co 

which can be satisfied if we choose the retarded 
function Ar(x - x'). In the quantum theory, on 
the other hand, the Feynman function A F is more 
appropriate. If AF is employed, it may be necessary 
to apply an "adiabetic switching" process to the 
gravitation constant K in order to satisfy the initial 
condition for gw 

(C) The Use of More General Matrix Elements 
for (T H"') 

We have thus far restricted our attention to a 
particular type of expectation value for T';;(x). A 
more general one is given by 

(1'"') == (w~S· Tj;(x)wn) 
ab (w~. Sw

b
) , 

where wa and 'lib are any pair of states belonging 
to the Hilbert space established at X4 = - 00. 

Graphical considerations allow us to split (T"'(X»ab 
into two parts. The first part corresponds to the 
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set of diagrams in which the point x is not connected 
by any internal line with the incoming or outgoing 
material particles; the second part corresponds to 
the diagrams in which the point x is connected with 
the initial of final states and the operators of the 
matter fields involved in T"J; create or destroy the 
incoming or outgoing particles. 

Accordingly we can write 

(T"'(X»ab = ('l1~8Tj;'l1o) ('l1~8'l1b) 
('l1~S'l1() ('l1~Sr b) 

+ ['l1~8T";;(X)'l1bJconnpctecl 
('l1~8'l1 b) 

= (T"'(x» + T"'(x, ab), 

where ('l1~8T"''l1 biconnected means the contributions 
from the "second part" mentioned above and 
T(x, ab) is 

T"'( b) = ['l1~ST";;(x)'l1 blconnected. 
x, a ('l1~S'l1 b) 

It is easily seen that the two terms in (6.2) 
separately satisfy conservation law (2.4). Further­
more, T"'(ab) has no singularities provided the 
singularities due to the coupling of the matter fields 
to one another have been removed beforehand. This 
is because the insertion of the operator T"lI into the 
S-matrix element has an effect similar to the simple 
insertion of an external g line into the corresponding 
diagram. 

If the external source t"'(x) is replaced by 
T"'(x, ab), then the solution cp~, of (5.5') gives the 
gravitational field produced by the material system 
during the transition from 'l1b to 'l1 •. If this solution 
is inserted in the equation for the Green's functions 
of the matter fields, one then obtains a semiclassical 
description of the scattering of particles due to 
their gravitational interaction. 

(D) Green's Function of the Gravitational Field 

The external source t"' must satisfy 

a"t"' + r;.tp, = 0, (6.3) 

which shows that t"' cannot be independent of gw 
If we expand t' in a functional power series in cp, 

w 

["'(x) = I: (Kn/n!) 
1/=0 

n 

X II {CPP;.;CYi) dYi I, 
j=1 

and insert the expansion into (6.3) we can find, by 
a sequential process, expressions for the tn's in terms 
of to and a set of arbitrary functions which enter 
because (6.3) is not sufficient by itself to determine 
each term tn completely. If we postulate, however, 
that each tn should tend to zero when to becomes 
zero, then the arbitrary functions become unique, 
and each tn becomes proportional to to. 

Consider a very small to(x) (or t''"). Since we 
know that cp", can be represented by a series in t 
beginning with the linear term, we can write the 
field equation (5.5'), correct to lowest order, in the 
form 

+ r/"' aP aU} f Gpu,a~(x, y)t~~(y) dy 

= -2 J 3~;;PU(x - z)GpU,Q#(z, y)t~#(y) dy dz 

- 2t6'(X). (6.4) 

The following abbreviations have been employed 
here: 

t~'(x) == to[}lV, x], 

G (x) = [oCPpu(x, t)] 
pu, a~ ,Y - <t a #( ) _' 

U'o Y to-O 

3~;;PU(x - z) 

== [_0_ {( _g(X»'/2 finite(T"'(x»)}] 
ocppu(z) to~O 

In virtue of the conditions 

(a/ax")3~;;PU(x - z) = 0, 
and 

(a/aX")t6'(X) = o. 
we can introduce the supplementary condition 

a"H""pu(x, y) = 0, 

which transforms (6.4) to 

f DH~;"(x, y)t~'(y) dy 

= -2 J 37;;P"(x - z)Gpu,n#(z, y) 

X tg#(y) dy dz - 2t6'(X) , 

(6.5) 

(6.6) 

(6.7) 

(6.4') 
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whence 

DH~:fi(x, x') 

= -2 J J~;;PU(x - z)Gpu.afi(z, x') dz 

- 2 0:; o(x - x'), 

or, alternatively, 

(6.8) 

In the momentum representation G(p) evidently 
has, roughly speaking, the form 

If the matter field is that of the neutral scalar meson, 
for example, one finds 

.'PU() J (p - k)"k'kP(p - kt d4k 
::1(2) P ex: [(p _ k)2 + /](k2 + /) . 

In the high-energy limit (p2 » Ii) the scaling 
relation 

(6.9) 

is easily verified. The same relation also holds for 
any matter field. Now, as has already been noted, 
J(2)(P) always diverges like co

4
• Let us therefore 

regularize it according to the Pauli-Villars prescrip­
tion. As long as the regulating masses remain finite 
the scaling relation (6.9) is still satisfied. In order 
to segregate the eventually divergent parts we may 
expand re

g
J (2) (p) in a power series in p, obtaining 

an expression of the form 

re
g J (2)(P) = A + (1/2!) 2: Bpp 

+ (1/4!) 2: Cpppp + finite J (2)(p). 

Of the eventually diverging terms the third domi­
nates in the high energy limit (although it has the 
weakest divergence). Since this term satisfies the 
same scaling relation as regJ (2) (p) so also does 

This is in contrast to the renormalized electron-mass 
operator in electrodynamics, for example, which has 
the asmptotic behavior 

~ (p) = O(p), 

which leaves the nature of the singularity of the 
Green's function 

G(p) = l[P + m + ~ (p)] 

essentially unchanged in the coordinate representa­
tion from that of the bare electron. In the present 
case the singularity of the Green's function becomes 
much weaker. This interesting feature suggests that 
the fully quantized theory, of which the "bubble 
diagram" approximation corresponds to the semi­
classical theory presented here, may contain within 
itself the automatic "cutoff" which has been 
speculated upon many times. That this is, in fact, 
the case will be the subject of a subsequent paper. 
Once it is recognized that the asymptotic behavior 
of G(p) is 1/p4, it may then be shown that this 
behavior is maintained to all orders of perturbation 
theory, no matter how complicated the corre­
sponding diagrams become, because of the very 
special property of the gravitational interaction that 
the insertion of any number of external g lines leaves 
the degree of divergence of a given diagram un­
affected. The "cutoff" is not sharp enough to 
eliminate all divergences, but no others beyond 
those already enumerated in the present paper 
appear. 

8 Let us consider, in general, some quantity F(p), a func­
tion of the external momenta p's, which corresponds to some 
type of Feynman graph. Suppose that F(p) is divergent of 
the order oon. Then one can show that the renormalized F'(p) 
which is defined by 

" 
F'(p) = FCp) - 2: (pk/lc!)· [akF(q)/al]q_o, 

k~O 

has the asymptotic behavior 

F'(p) = O(p") for p ~ co, 

where 00 0, O(pO) mean log 00 and O(log p), respectively. 
9 N. N. Bogoliubov and D. V. Shirkov, Introduction to the 

Theory of Quantized Fields. (Interscience Publishers, Inc., New 
York, 1959), see Sec. 26.3. 
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A general demonstration is given of the fact that the quantization of any system, as expressed by the 
uncertainty principle, implies the quantization of all other systems to which it can be coupled. It is also 
shown that the precise form which the uncertainty principle takes is uniquely specified. That is to say, 
the uncertainty principle effectively defines the commutator of any pair of observables. The argument 
serves to detach completely from its canonical origins a previously given definition of the commutator 
(which is a generalization of one given by Peierls) applicable to systems with infinite-dimensional 
invariance groups, for which the identification of canonical variables is an inconvenience. The meas­
urements of a single observable and of a pair of observables are analyzed according to the Bohr-Rosen­
feld scheme. 

INTRODUCTION 

I N a previous paperl a means of constructing the 
commutator of any two observables was given 

which is independent of the explicit discovery of 
pairs of canonically conjugated variables. The 
method is essentially a generalization of Peierls' 
technique2 to the case of dynamical systems possess­
ing infinite dimensional invariance groups. The 
category of "observables" is restricted to the set 
of group invariants, and the main analytical tools 
are the Green's functions which describe the propa­
gation of small disturbance in the system in question. 

Although the connection with canonical theory 
was established in (I), it was pointed out there that 
the Green's function approach is a logically inde­
pendent structure which can be based directly on 
the quantum theory of measurement. The uncer­
tainty principle serves to define the commutator in 
terms of the interference between two measure­
ments. It is the purpose of the present paper to 
demonstrate this fact in detail. 

The Peierls definition of the Poisson bracket is 
briefly reviewed in Sec. 1, and a careful statement 
of the uncertainty principle is given. In Sec. 2 the 
theory is applied to the measurement of a single 
observable, and the necessity for the introduction of 
compensation mechanisms supplementing the meas­
uring apparatus is shown. The measurement of two 
observables is studied in Sec. 3, where it is shown 
that even v,ith the introduction of correlation as 
well as compensation mechanisms, the mutual 
interference of the two measurements prevents the 
achievement of a simultaneous accuracy better than 

lB. S. DeWitt, J. Math. Phys. 2, 151 (1961). This paper 
will be referred to as (1). 

2 R. E. Peierls, Proc. Roy. Soc. (London) A214, 143 (1952). 

that allowed by the uncertainty principle. Limita­
tions imposed by the strictly classical nature of the 
analysis are briefly considered at the end of Sec. 3. 

The demonstration is essentially a paraphrase, 
applicable to completely arbitrary systems, of the 
Bohr-Rosenfeld paper3 on the electromagnetic com­
mutators. It is shown in a quite general manner 
that the quantization of a given system implies also 
the quantization of any other system to which it 
can be coupled. By a principle of induction, there­
fore, the quantum theory must be extended to all 
physical systems. Moreover, the precise form of 
the commutator between any two observables is 
uniquely specified, with, however, one qualification: 
The uncertainty principle, like the correspondence 
principle, is only a guide to the exact theory and 
cannot, for example, resolve the factor ordering 
ambiguity which occurs in the transition from a 
classical expression to a quantum operator. Except 
where otherwise indicated the notation is that of (I). 

1. THE POISSON BRACKET 

The theory of the Poisson bracket given in (I) 
was based on a transformation of the action func­
tional of the system in question, of the form 

S--+ S + EE, (1.1) 

where E is any invariant of the system and E is an 
infinitesimal constant. Such a transformation may 
be regarded as yielding the most rudimentary 
description of the coupling of the original system 
weakly to an external system. The smallness of E 

corresponds to the weakness of the coupling and 

3 N. Bohr and L. Rosenfeld, Kg!. Danske Videnskab. 
Selskab, Mat.-fys. Medd. 12, 8 (1933). 

619 
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its constancy corresponds to the neglect of the 
reaction of the original system back on the external 
system, a neglect which is justified if the external 
system is sufficiently macroscopic and the primary 
object of interest is the disturhance which the ex­
ternal system itself produces. The choice of B 
as an invariant of the original system implies that 
the coupling maintains all invariance properties 
intact. 

The change (1.1) induces advanced and retarded 
changes o;y/ in the dynamical variables y/, which 
satisfy the equation 

ventional one. It will be noted immediately that 
the usual identities 

(A, B) 

(A, B + C) 

(A, BC) 

-(B, A), 

(A, B) + (A, C), 

(A, B)C + B(A, C), 

(1.11) 

(1.12) 

(1.13) 

are satisfied. The proof of the Poisson-Jacobi 
identity is given in (1). 

The system S is formally quantized by relating 
the commutator to the Poisson bracket in the 
familiar manner 

(1.2) [A, BJ = i(A, B) = i(D AB - DBA), 

[cf. (1, 3.9)]. Although the o;y/ are not uniquely 
determined by this equation when an infinite­
dimensional invariance group is present, the corre­
sponding variations 

~A J A '" i 4 OB = ,i OBt/; d x (1.3) 

in any group invariant A are well defined. Following 
Peierls2 it is convenient to introduce the quantity 

(I.4) 

The choice of the retarded boundary condition here, 
rather than the advanced, anticipates the "one way" 
character of the measurement process in the descrip­
tion of which this quantity will be used in the fol­
lowing sections. 

From the linearity of Eq. (1.2), which permits 
the application of the superposition principle, the 
following identities, involving group invariants A, 
B, C, may be readily inferred: 

DA(B + C) DAB + DAC, (1.5) 

DA(BC) (DAB)C + BDAC, (1.6) 

DA+BC = DAC + DBC, (1.7) 

DARC = (DAC)B + ADBC. (I.8) 

The Poisson bracket of two invariants A and B will, 
for all physical systems, be defined by 

In view of the reciprocity theorem 

o;B = o;A 

(1.9) 

(1.10) 

[cf. (1, 1.14), (1, 3.20), and footnote 11 of (I)] this 
definition is identical to that given in (I). In the 
case of systems possessing no canonical constraints 
it has been shown hy Peierls2 to reduce to the con-

(n = 1), (I.14) 

which leads immediately to the uncertainty principle 

~A ~B ~ t I((A,B»I, (1.15) 

where ~A and ~B are the root-mean-square devia­
tions of A and B, respectively, from their average 
values (A) and (B) in the quantum state in question. 
It is important in what follows to have a clear 
understanding of exactly what the uncertainty 
principle says in physical terms. The uncertainty 
principle is a statement about the fundamental 
limitations imposed by the quantum theory on the 
relation between measurements and prediction­
more precisely, between measurements and the 
possibilities of making predictions expressed in 
classical language. Suppose the observable4 A has 
been measured with an accuracy ~A; what does 
this imply in the vmy of restrictions on the accuracy 
of predictions concerning the ourcome of subsequent 
measurements? Taking note of the fact that the 
measurement of a given observable will, in generaJ, 
occupy a finite amount of time, which may itself 
be involved in the definition of the observable, let 
us first consider the case in which the interval 
associated with the observable B is subsequent to 
that associated with A. The uncertainty principle 
then states that as a result of the uncontrollable 
disturbance in the system produced by the measure­
ment of A, the use of a classical value for B in 
making predictions about the outcome of subsequent 
measurements of quantities which depend on B is 
limited to the extent of an uncertainty ~B which 
is given by relation (1.15). The "classical value" to 
be used for B in this case is its average value (B) in 
the quantum state resulting from (or "prepared by") 
the measurement of A. For simplicity in the subse­
quent discussion the brackets ( ) will be omitted 

4 Any invariant is here regarded as an observable. 
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whenever it is clear from the context that the 
"classical value" is meant. In particular, we shall 
write the uncertainty relation in the loose form 

(1.16) 

The relation between A and B is a completely 
reciprocal one, and because of the time reversibility 
of quantum mechanics the above situation may 
be equally well described in terms of a limitation 
AA on retrodictions conditioned by a measurement 
of B with accuracy AB in the future. The necessity 
for this reciprocity is revealed with particular 
keenness in the case in which the time intervals 
associated with A and B overlap. The simplicity of 
the previous description, in which the measurements 
of A and B could be ordered in temporal sequence, 
is missing in this case, and the state of the system 
must here be regarded as conditioned simultaneously 
by the results of both measurements, together with 
their mutual interference. 

2. MEASUREMENT OF A SINGLE OBSERVABLE 

Measurements are performed on a system S 
through coupling with a second system S called the 
apparatus. In principle, any invariant can be meas­
ured through suitable choice of apparatus and 
coupling. We shall assume that the uncertainty 
principle holds in the form (1.16) for the apparatus. 
It will then be shown (in the next section) to hold 
in the same form for the system S. By induction, 
therefore, it may be extended in this form to all 
physical systems. Consequently, if a description of 
nature is demanded which avoids the use of "hidden 
variables," the commutator must in all cases be 
given by (1.14). 

The coupling of system to apparatus which is 
mathematically the most convenient for analyzing 
the measurement of a single observable A is that 
which is expressed (at least approximately) by a 
total action functional of the form 

S + S + gxA. 

Here g is an adjustable "coupling constant" and x 
is some convenient apparatus variable. For example, 
in the Stern-Gerlach experiment, where A is an 
atomic spin, x is effectively a finite time integral of 
the z component of the position of the atom in a 
magnetic field which is inhomogeneous in the z 
direction, the strength of the field and the magnitude 
of the atomic magnetic moment being described by 
g. Similarly, in an electromagnetic field measure­
ment, where A is an average of a field component 
over some space-time domain, x is a space-time 

average over the positions of the constituent particles 
of an appropriate test body, the electric or magnetic 
charge on the test body being contained in g. It is 
true, of course, that the classical description of the 
measurement process which is given in what follows 
is strictly applicable only to the observables A 
possessing continuous or at least quasi-continuous 
spectra. The uncertainty principle itself, however, 
can be extended in well-known ways to discrete­
spectrum situations. 

The measurement of A is carried out by deter­
mining the deviation in the value of some other 
suitable apparatus variable 11", as a result of the 
coupling, from the value it would have had in the 
absence of coupling (g = 0). The variable 11" is said 
to be "suitable" if it satisfies the conditions 

(2.1) 

That is, 11" describes a dynamical state of affairs 
subsequent to the coupling process so that although 
x has a retarded effect on 11", 11" has no retarded effect 
on x. For example, in the Stern-Gerlach experiment 
11" might be the position of the point at which the 
atom strikes a photographic plate after having 
passed through the magnetic field, while in an 
electromagnetic field measurement 11" may be the 
total momentum of the test body at the end of the 
time interval involved in the coupling term gxA, 
as observed via the Doppler shift of photons, for 
example.1S Of course, it is in the analysis of the final 
observation, performed upon the apparatus variable 
11", that the source of many of the polemics concerning 
the conceptual foundations of the quantum theory 
lies. But the resolution of the difficulties inherent 
in this analysis, whether in terms of a discontinuous 
"collapsible" behavior of wave functions, as de­
manded by the Copenhagen school,6 or by insistence 
on an isomorphism between the real world and an 
infinitely "branching" universal wave function/· 8 

or with the aid of some other viewpoint, is largely 
a metaphysical problem, irrelevant to the present 
discussion. 

6 In reference 3, Bohr and Rosenfeld actually found it more 
convenient to work with a '11" which satisfies the opposite 
conditions 

D,,'1I" = 0, (x, '11") = -D"x ;;c O. 

Their '11" is the difference between the momenta at the be­
ginning and end of the measurement interval. Since the final 
momentum is measured by them with infinite accuracy the 
deviation of their '11" from the value it would have in the ab­
sence of coupling satisfies advanced boundary conditions. 

6 W. Heisenberg, in Niels Bohr and the Development of 
Physics, edited by W. Pauli (Pergamon Press, New York, 
1955). 

7 H. Everett, III, Revs. Modern Phys. 29, 454 (1957). 
8 J. A. Wheeler, Revs. Modern Phys. 29, 463 (1957). 



                                                                                                                                    

622 BRYCE S. DeWITT 

Let us denote the complete set of apparatus 
variables by <I> a • Without essential loss of generality 
they may, like the if;', be regarded as functions 
of space as well as time. In the absence of coupling 
the dynamical variables if;', <l>U satisfy the equations 

0, (2.2) 

terms. In order to allow for the very disturbance 
(2.7) which the measurement prodnces in A, and 
hence to observe A in the truly quantum domain, 
it is necessary to go to the second order. On the 
other hand, by choosing the apparatus sufficiently 
macroscopic (IS,awl » IS.wl), we may ignore those 
second-order terms which involve the 0- <I> a. We 

0. (2.3) have, therefore, 

The presence of coupling induces deviations r if/, 
0- <l>u which satisfy 

° = S,;[~ + r~J + gx[<I> + r<l>JA.i[~ + o-~J 

= J S,ii' O-~i' d
4
x' + ! J d4

x' 

X J d4x"S,ii'k" O-~i' O-~k" + 

+ gXA,i + gx J A,d' O-~i' d4
x' 

+ gA,i J X,a' r<l>a' d4x' + ... , 

+ gX,a A + gA J X.a~' r<l>~' d
4
x' 

+ gX,a J A,i' O-~i' d4x' + ... 

(2.4) 

(2.5) 

correct to second order in g. We now assume g to 
be small. In many analyses of the measurement 
process precisely the opposite is assumed, the 
coupling between system and apparatus being taken 
as intense, although of brief duration. The weak 
coupling limit, however, corresponds to the classical 
idea that a careful measurement should be able to 
impart a negligible disturbance to the object system. 
Our purpose here is to determine the limitations on 
this idea and to find the uncontrollable uncertainties 
which remain in spite of all precautions. 

In the weak coupling limit we have 

J S,ii' O-~i' d4x' = -gXA,i' (2.6) 

and hence, 
(2.7) 

In the corresponding apparatus equation, however' 
it would not be correct to retain only first-order 

+ J A ;' d4 , gX,a ,i' o-~ X 

= J S.aW r<l>fi' d4
x' + g(A + rA)x,a, 

and hence,9 
0-71" = g(A + 0-A) D x7l". 

Solving Eq. (2.9) we get 

A = ~ - gXDAA, 
g D x7l" 

(2.8) 

(2.9) 

(2.10) 

which expresses A in terms of the "experimental 
data," and from which it follows that the mean 
square uncertainty III the measurement of A 
satisfies 

(2.11) 

where ~71" and ~X are the root-me an-square uncer­
tainties in the values of 71" and x in the original 
apparatus state. Since the uncertainty principle IS 

assumed to hold for the apparatus, we have 

(2.12) 

whence 

1 ( 1 )2 + 2 2g ~x + g IDAAI ~x , (2.1:3) 

9 When ... satisfies the conditions of footnote 5, Eq. (2.9) 
is replaced by ,,+ ... = g(A + ,,-A)Drx, 
in which use of the reciprocity theorem (1.10) is made. This 
leads to the same uncertainties (2.13) and (2.14) as those 
which follow from the conditions adopted in the text. We 
note that in view of the reciprocity theorem we have 

,,-A = ,,+A, 
and hence the specification of boundary conditions on the 
measurement-induced disturbance in A is really unnecessary 
here. Boundary conditions are important, however, when two 
observables are involved as in Sec. 3. 
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which, upon minimization with respect to the systems SI and S2 may be regarded as forming 
product g!1x, yields together a single apparatus 

(2.14) 

Bohr and Rosenfeld3 have shown that (2.14) does 
not really represent the maximum accuracy attain­
able in the measurement of a single observable. 
By the introduction of a suitable "compensation 
mechanism" the effect of the disturbance which the 
measurement itself induces in A can be canceled. 
Mathematically, the introduction of the com­
pensation mechanism corresponds (at least approxi­
mately) to the addition of a second-order term, 
-!lX2DAA, to the action functional, so that the 
total action now takes the form lO 

8 + S + gxA - !lx2 DAA. 

With this form the first-order disturbance in A is 
the same as before [Eq. (2.7)]. The effect of the 
coupling on 7r, however, is now given, correct to 
second order, by 

0-7r = g(A + 0- A) Dx7r 

- lx DAA Dx7r = gA Dx7r, (2.15) 

i.e., by the classical weak-coupling limit. Therefore, 

(3.1) 

for which the uncertainty principle is again assumed 
to hold. Introducing compensation mechanisms as 
before, we are led to consider a total action functional 
of the form 

The deviations in the quantities A, B, 7rl, 7r2 from 
the values they would have had in the absence of 
coupling (gl = g2 = 0) are now given, correct to 
their appropriate orders, by 

glXl DAA + g2X2 DBA, 

g1X2 DAB + g2X2 DBB, 

gl(A + r A) Dx,7rl - g~Xl DAADx,7rl 

glADx,7rl + glg2X2 DBADx,7rl' 

g2(B + rB) Dx,7r2 - g~X2 DBBDx,7r2 

g2BDx,7r2 + g1g2XI D ABDx,7r2' 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

A and B are therefore given, in terms of the experi­
(2.16) mental data, by 

and we see that the accuracy with which A may be 
measured is limited only by how big the product g!1x 
can be made without destroying either the observable 
A itself or the validity of the weak coupling approxi­
mation. The only fundamental limitation of the 
latter kind which is presently known to exist is that 
associated with the existence of a "smallest" length 
in the quantum theory of gravitation, a limit, 
however, which lies within the ordinary quantum 
domain by many orders of magnitude. 11 

3. MEASUREMENT OF TWO OBSERVABLES 

A= 
0-7rl 

g2X2 DBA, (3.6) 
gl Dx,7rl 

B= 
0-7r2 

- g,x I DAB. (3.7) 
gz D,,7r2 

Applying the uncertainty principle to the apparatus 
as before, we get 

!1A2 ,2:, ~ (2g,1!1X
l 

- g2 IDBAI !1X2y 

1 ( 1 )2 + 2 2g, !1XI + gz IDBA I !1X2 , (3.8) 

For the measurement of two observables, A and !1B2 
B, it is neeessary to introduce variables XI, 7rl and 

1 ( 1 )2 ,2:, 2 2gz !1X2 - gl IDABI !1x, 

X2, 7r2 from eaeh of two independent apparatuses 
SI and S2) satisfying the eonditions (2.1). The 

10 In many important cases D AA either vanishes or is 
equal to a constant determined by the geometry and param­
eters of the measuring arrangement, and it is therefore usually 
not difficult to invent a conceptual device to serve as a satis­
factory compensation mechanism. The quadratic dependence 
of the compensation term on x suggests the frequent suita­
bility of mechanical springs. (See references 3 and 11.) 

11 B. S. DeWitt, in Gravitation, An Introduction to Current 
Research, edited by L. Witten [John Wiley & Sons, Inc., New 
York, (to be published)]. 

1 ( 1 )2 + 2 2g
2 

!1X2 + g, IDABI !1x, (3.9) 

It is readily verified that the product !1A 2 !1B2 is 
minimized by setting'2 

- 1 'D BI- 1/2 ID A 1- 112 glgz !1XI !1X2 - "2 I A B . (3.10) 

12 If DAB = DBA = 0, it is obvious that A and B can be 
measured to a simultaneous accuracy limited only by the 
weak coupling conditions on g,Ax, and g2Ax2. 
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Therefore 

.:lA dB .cH( -! IDABI 

- ! IDBAI + IDABlt!2 IDBAII!2)2 

+ H! IDABI - ! IDBAI)2 

+ H -! IDABI + ! IDBA 1)2 

+ H! IDABI + ! IDBAI 

+ IDABII!2 IDBAII!2)2r!2 

= !CIDABI + IDBAI). (3.11) 

If either DAB or DBA vanishes (e.g., if the time 
intervals associated with A and B do not overlap) 
then this uncertainty relation reduces to (1.16). In 
the general overlapping case, however, (3.11) contra­
dicts the uncertainty principle. In particular, if 
A = B we are led to the inadmissable implication 
that the results of simultaneous measurements 
performed on the same quantity are not necessarily 
identical. 

Bohr and Rosenfeld3 showed that the plus sign 
appearing on the right-hand side of (3.11) can be 
changed to the minus sign of relation (1.16) by 
introducing, in addition to the individual com­
pensation mechanisms already present, devices 
which also correlate the disturbances produced by 
the two measurements. Such "correlation mech­
anisms" are described by an additional term in the 
action of the form -!glg2xlx2(DAB + DBA). The 
resulting total action, 

S + S + glx1A + g2X2B - !g~x~ DAA 

- !g;x; DBB - !gtg2xlx2(DAB + DnA), 

yields the maximum simultaneous accuracy for the 
two measurements. With this action functional we 
have 

0-7f"1 = gl[A + o-A - glxl DAA 

- !g2x2(DAB + DBA)] D x ,7f"1 

gl[A - !g2x2(DAB - DBA)] D x ,7f"t. (3.12) 

0-7f"2 = g2[B + o-B - g2X2 DBB 

- !glxl(DAB + DBA)] D x ,7f"2 

= g2[B + !glxl(DAB - DBA)] D x ,7f"2, (3.13) 

Eqs. (3.2) and (3.3) remaining unchanged. Therefore 

(3.14) 

(3.15) 

(3.W) 

(3.17) 

(3.18) 

the mmlmum value of the product .:lA.:lB being 
attained whenl3 

(3.19) 

The assertion made in the Introduction, that the 
uncertainty principle effectively determines the 
commutator (or Poisson bracket) of two observables, 
is thus confirmed. 

It remains necessary only to call attention to the 
fact that the use of "classical" or "average" values 
of observables such as A and B in the above descrip­
tion has important limitations. Some of these 
observables may occur in products or may them­
selves be expressible as products of other variables. 
Now, the average value of a product may be equated 
to the product of the average values only in the 
limit of high quantum numbers, and then only in 
the case of systems possessing a finite number of 
degrees of freedom. A direct classical description 
of the quantities in question will therefore not 
be strictly valid, particularly in the case of quantized 
fields. Such a description neglects a number of im­
portant purely quantum effects, namely, those which 
give rise to the phenomena of vacuum polarization 
and level shifts as well as to mathematical infinities 
in the formalism. However, the technical procedure 
of "renormalization" can be expected to reinstate 
the approximate validity (i.e., to lowest order) of 
the classical description provided the coupling of 
the field to its sources is sufficiently weak and/or 
there exists a fundamental invariance group which 
sufficiently dominates the formalism (e.g., electro­
dynamics,14 gravitation). 

13 If (A, B) = 0 only the weak coupling condition limits 
the simultaneous accuracy of the two measurements. 

UN. Bohr and L. Rosenfeld, Phys. Rev. 78, 794 (1950). 
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. The .Gree~'s function ~pproach to the definition of commutators for fields possessing infinite-dimen­
slOnal mvanance groups IS extended to the case of anticommuting fields. The discussion is restricted to 
fiel?s which provide linear homogeneous or inhomogeneous representations of the group, a restriction 
Whl('~ excludes no case o~ practical interest and facilitates setting up the formalism in a manifestly 
cova:Iant way. Se~-con~lstency of supple~entary conditions, Huygens' principle, and reciprocity 
relatlO~s are es~abhshed Just as ~or com~utmg fields. Careful attention must be paid to the ordering 
?f an.tICommutmg. factors, partlcularly m the demonstration of the Poisson-Jacobi identity. The 
mvarlance propertIes of the Poisson bracket are investigated in detail and the notion of conditional 
invariant is introduced. A special class of conditional invariants called asymptotic invariants, which give 
a complete physical characterization of initial and final states of the dynamical system, is studied in the 
final section. 

INTRODUCTION 

I N a previous paper! [to be referred to as (I)] a 
general theory of the Poisson bracket (com­

mutator) was developed which dispenses entirely 
with Hamiltonian ideas and which treats space-time 
in a completely homogeneous fashion. The formalism 
is especially suited to the study of fields possessing 
infinite-dimensional invariance groups, for which 
the identification of canonical variables is an 
inconvenience. By introducing the Green's functions 
which describe the propagation of small disturb­
ances about a given solution of the dynamical 
equations, and by restricting the definition of the 
commutator to group invariants (i.e., actual 
physical observables), the quantization of such 
fields is accomplished without the use of subsidiary 
conditions on the physical state vectors. Although 
the connection between the adopted definition of 
the Poisson bracket and that of the conventional 
canonical theory was indicated in (I), it was pointed 
out that the Green's-function definition is capable 
of standing independently on its own as a corollary 
of the uncertainty principle and the theory of 
measurement. This assertion has been given detailed 
justification in another paper2 in which it is shown 
explicitly how the uncertainty principle serves 
uniquely to define the commutator via analysis 
of coupling with a measuring apparatus. 

* This research was supported in part by the Department 
of the Navy, Office of Naval Research, under contract Nonr-
855(07) and in part by the Air Force Office of Scientific Re­
search under contract AFOSR 61-72. 

! B. S. DeWitt, J. Math. Phys. 2, 151 (1961). 
2 B. S. DeWitt, J. Math. Phys. 3, 619 (Hl62). 

In the present paper we wish to extend the 
previous work in a different direction. The dis­
cussion of (I) was limited to the case of commuting 
fields, for which direct classical forms exist. It 
was remarked, however, that the methods intro­
duced were capable of straightforward generaliza­
tion to the case of anticommuting fields. We shall 
here carry out this generalization. At the same time 
we shall revise and specialize some of our earlier 
procedures with an eye on future applications. 

The notation of (I) will be somewhat altered and 
condensed. The use of primes on indices to dis­
tinguish space-time points will be reserved for 
special instances in which the display of details is 
desirable (Sec. 3). More commonly we shall simply 
omit both primes and integration signs, allowing 
the indices to do double duty as (1) discrete labels 
for field components and, (2) continuous labels over 
space-time points, and extending the summation 
convention for repeated indices so as to imply 
integration as well. Thus, for example, Eq. (I, 3.5) 
will suffer the condensation 

Functional differentiation will be denoted by the 
comma as before, but Greek letters from the first 
part of the alphabet will be used in place of capital 
Latin letters to denote indices associated with the 
invariance group. For the achievement of maximum 
generality both commuting and anticommuting 
fields will be considered at once, and the symbol 1{1 
will now be reserved for the latter. Commuting 

625 
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fields will be identified by the symbol tP. Further­
more, indices associated with the two types of fields 
will be distinguished by writing those associated with 
the anticommuting fields in boldface and leaving 
the others in lightface type. Thus, for example, 

In performing functional differentiations with 
respect to anticommuting field components a dis­
tinction must be made between right and left 
derivatives. The comma will here always be under­
stood as signifying the right derivative, and indices 
following it will be written in the order in which the 
differentiations are performed: 

o 0 
.4 ij .•• = ···-.-.A. 

. of) of' 

The variation in A due to anticommuting variat.ions 
N i in the fi is then given by 

with the factors taken in the order indicated. 
The measurement theoretical analysis of the 

uncertainty principle will again be taken as the 
basis for the definition of commutators of observ­
abIes. It is to be noted that it is the commutator 
rather than the anticommutator which is involved 
in this analysis, for only commutators map into 
the Poisson brackets of the uncertainty relation. 
This implies that an observable (and also the action) 
must not only be a group invariant, but must involve 
combinations of the fi of even degree only. The 
"quasi-classical approximation" of (I), in which all 
quantities (except those appearing in the primary 
commutator under discussion) are treated as 
rigorously commuting, will be extended by treating 
the fi as rigorously anticommuting among them­
selves while commuting with the tP i. The fi must 
therefore be contained either linearly, not at all, 
or in completely antisymmetric combinations in all 
dynamical quantities. From this it follows that 
boldface indices induced by repeated functional 
differentiation with respect to the fi will anti­
commute among themselves while commuting with 
any lightface indices induced by functional dif­
ferentiation with respect to the tPi. The f\ like the 
tP i

, will be assumed to be real (Hermitian). The 
functional derivatives of order 1, 2, 5, 6, 9, 10, etc. 
with respect to the fi of any real (Hermitian) 
observable will, therefore, be imaginary (anti­
Hermitian) while the functional derivatives of 

order 3,4, 7, 8, 11, 12, etc., will be real (Hermitian). 
Furthermore the functional derivatives of even 
order with respect to the fi will, in the quasi­
classical approximation, commute with everything 
while those of odd order will ant.icommute among 
themselves. Reflecting this rule, the formalism of 
the following sections will be set up in such a way 
that quantities bearing an even number of boldface 
indices will be of the commuting type while those 
bearing an odd number will be of the anticommut­
ing type. The symmetry and reality properties of 
the two kinds of indices will not, however, generally 
follow the pattern which holds for functional 
differentiation. 

The representations of t.he invariance group 
provided by the tP i and fi will be restricted, in the 
present paper, to be linear (homogeneous or in­
homogeneous). Reasons for this restriction, which 
excludes no case of practical interest, are given in 
Sec. 1, and a number of its simplifying consequences 
will be noted. In Sec. 2 supplementary conditions 
are imposed on the variables representing small 
disturbances in the dynamical system, so that 
Green's functions describing the propagation of 
these disturbances may be introduced. The self­
consistency of these conditions is verified in detail. 
Huygens' principle and the reciprocity relations for 
the nonsymmetric wave operators which appear 
when anticommuting variables are present are 
established in Sec. 3. Section 4 is devoted to a study 
of the invariance properties of the Poisson bracket 
and the conditions under which it is unique. The 
notion of conditional invariant is introduced in this 
connection. The steps in the derivation of the 
Poisson-Jacobi identity are outlined in Sec. 5. 
Finally in Sec. 6 an important class of conditional 
invariants is constructed, namely, the asymptotic 
invariants which serve to characterize initial and 
final states of the dynamical system. 

1. RESTRICTION TO LINEAR REPRESENTATIONS OF 
THE INVARIANCE GROUP 

In the classical domain the theory of dynamical 
systems possessing infinite-dimensional invariance 
groups is not strongly affected by the nature of 
the representation of the invariance group which 
the dynamical variables provide. The theory of the 
Poisson bracket can be developed for any type of 
representation, and with any choice of variables 
(provided they are local). Even transitive representa­
tions are permitted, although in this case the theory 
becomes completely trivial, since the only invariants 
are then numerical constants and all Poisson 
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brackets vanish. 3 In the quantum theory, however, 
linear representations appear to be mandatory. It 
is known from the work of Pais and Uhlenbeck4 on 
field theories with nonlocalized action that if the 
vacuum is to exist as a stable state and if negative 
probabilities are to be avoided, the covariant Green's 
functions of the theory must generally satisfy 
differential equations of degree no higher than the 
second. This means that the Lagrangian must be 
similarly limited in the degree of its space-time 
derivatives. Only for linear representations can 
Lagrangians of this type, which yield invariant 
action functionals, be easily found. 5 Such action 
functionals usually take the form of quadratic or 
bilinear invariants, the only familiar exception being 
that of the gravitational field. 

Of course, a given representation may be rendered 
nonlinear by transforming to a different set of 
variables, and since the dynamical equations them­
selves are always nonlinear when the invariance 
group is non-Abelian it would seem to matter 
little whether such a transformation is performed or 
not, at least in the non-Abelian case. However, when 
a linear form for the representation exists, it is a 
convenience to use it-quite apart, it may be added, 
from any aid it may be in the resolution of the 
factor ordering ambiguity of the rigorous quantum 
theory, a problem which remains presently rather 
obscure. Furthermore, it may be noted that from 
a purely group-theoretical viewpoint the restriction 
to linear representations is relatively minor, since 
any representation may be rendered linear by 
adding a sufficient number of extra variables and 
performing a suitable transformation. It must be 
admitted, of course, that the extra variables, being 
invariants, would be in principle observable. How­
ever, they can always be rendered dynamically in­
nocuous by suitable choice of the action. 

The infinitesimal group transformation law for 
the cf>i, 1/;i will be written in the form 

3 For Lie groups [see L. Pontrjagin, Topological Groups 
(Princeton University Press, Princeton, New Jersey, 1946)] 
each transitive representation can be represented as a trans­
formation group over a manifold of "points" identifiable with 
the left cosets of a certain subgroup containing no normal 
subgroups of the original Lie group other than the identity. 
The classification of transitive representations reduces to the 
determination of subgroups possessing this property. The 
same is presumably true in the case of infinite dimensional 
continuous groups. The only group possessing representations 
which are simultaneously transitive and linear is the full 
linear group. 

4 A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950). 
• The limitation to linear representations is further rein­

forced by the requirement that the field variables shall asymp­
totically describe free relativistic particles having definite 
mass and spin. For a discussion of the transformation proper­
ties of the asymptotic fields see Sec. 6. 

&pi = R~ of' (1.1) 

where the 01;" are group parameters which are here 
assumed to be real numbers which commute with 
everything. 6 We shall assume that the functions 
R~, R; provide a faithful representation of the 
maximal infinite-dimensional invariance group of the 
system, so that 

[~~l 01;" = 0 if and only if W = O. (1.2) 

The linearity requirement takes the form 

0, 

0, 

R~.i = a,} 
R~.jk = O. 

(1.3) 

The first pair of equations arises from the fact that 
the representation cannot mix variables of different 
type. That is, the variations &pi, O1/;i must have the 
same (anti-)commutation properties as the cf>" 1/;i. 
This requirement implies also that although the 
representation provided by the cf>i may be linear 
inhomogeneous, that provided by the 1/;i must be 
strictly homogeneous. That is, 

(1.4) 

The integrability conditions for the representation 
take the form 

R~.jm - m.jR~ = R~c:p, (1.5) 

R~.jm - RLR~ = R;c:p, (1.6) 

where the c:p are the structure constants of the 
group. These conditions may also be regarded as 
expressing linear homogeneous transformation laws 
for the R~, R~ themselves: 

oR~ == R~.im 01;13 = (-R;cl" + RLR~) 01;13, (1.7) 

oR~ == R~.jRj 01;13 = (-R;cl" + R~.jR~) 01;13. (1.8) 

The representations which R~ and R~ provide are 
evidently direct products of (1) the representation 
contragredient to the adjoint representation, and 
(2) the homogeneous parts of the representations 
provided by cf>i and 1/;i, respectively. 

A group invariant A is characterized by the 
condition 

(1.9) 

6 The possibility of anticommuting group parameters also 
exists, but since it has no apparent physical interest we do 
not consider it. It is encountered, for example, in the gauge 
groups of massless fields having spins 3/2, 5/2, etc. Since 
these groups are Abelian, the structure constants vanish. The 
general non-Abelian case would involve anticommuting struc­
ture constants. 
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Differentiating this identity and making use of the 
relation 

(XY).; = -X.i Y + XY. i , (1.10) 

which holds for functionals Y of odd degree in the 
y.,i, we get 

o == A.;;R; + A.;R~.i + A.iiRl 

= A.iiR~ + A.;R~.i + A.iiRl, 

o == A.;iR~ - A.jiR! + A.iR~.i 
= A.I;R~ + A.iiR! + A.iR~.i' 

(1.11) 

(1.12) 

which, when applied to the action functional, yield 

[
s .. . ., 
S.ii 

S.ii] [R:] = 0 
S.ii Ra 

(1.13) 

when the dynamical equations 

S.i = 0 S.i = 0 (1.14) 

are satisfied. For arbitrary invariants Eqs. (1.11) 
and (1.12) also yield the transformation laws 

OA.i == (A.iiR~ + A.iiR;) W 

= -A.,R~.i o~a, (1.15) 

oA.1 == (A.i;R~ + A.IjR;) o~a 

(1.16) 

By repeatedly differentiating Eqs. (1.11) and (1.12) 
it is easy to show that the functional derivatives, to 
all orders, of any invariant satisfy homogeneous 
linear transformation laws identifiable as direct 
products of representations contragredient to the 
homogeneous parts of the representations provided 
by q';, y.,i, 

Denoting by o~cp\ O~y.,i the advanced and retarded 
changes produced in a given solution of the dy­
namical equations by the infinitesimal change 

S~S+EA (1.17) 

in the action functional, we have [cf. (1,3.9)] 

[
S.;; S.ii] [o:cp:] = _E[A.i]. 
S.I; S.li OAy., A.I 

(1.18) 

Because of the singularity of the matrix on the left, 
as expressed by Eq. (1.13), the solutions of this 
equation are determined only modulo an infinitesimal 
group transformation (1.1). Particular solutions may 
be obtained by imposing supplementary conditions. 
For this purpose we introduce a continuous loeaf 

7 By "local" we mean having delta-function type behavior. 
The need for this condition, which insures the maintenance 
of the sharp distinction between advanced and retarded 
Green's functions, was not sufficiently emphasized in (I). 

matrix 

(1.19) 

which has the same symmetry and reality properties 
as the matrix of Eqs. (1.13) and (1.18) and which 
is such that the continuous matrix 

Fa~ == (R~ R!) [ (Iii 

-(Iii 

(1.20) 

with 

[~::] == [;:: ;::] [~~] , (1.21) 

is a proper wave operator possessing unique Green's 
functions G2a~. Here again, as in (I), such matrices 
are easily found in actual cases, their existence 
depending, just as in the theory of finite matrices, 
on the linear independence of the R~, R! [faithful 
representation; cf. Eq. (1.2)]. It is not actually 
necessary to assume, as was done in (I), that the 
matrix (1.19) is nonsingular. We shall have no need 
of its inverse, and only use it to lower the indices 
i, i on R~, R!. Its choice is to a considerable extent 
arbitrary, but we shall show later (Sec. 4) that this 
arbitrariness leaves the Poisson bracket unaffected. 
We note that although R~, R!, and Ria are real 
(Hermitian), the anticommuting quantity Ria is 
imaginary (anti-Hermitian). 

It is a great practical convenience, although not 
strictly necessary, to select the matrix (1.19) in such 
a way that it has the same linear group transforma­
tion properties as the matrix of Eqs. (1.13) and 
(1.18). This makes it possible to keep the manifest co­
variance of the formalism always clearly in the 
foreground, for the transformation character of all 
expressions appearing in the formalism is then 
rendered evident at a glance. This is one of the 
major virtues of the restriction to linear representa­
tions. Under these conditions the Green's functions 
G·a~ transform according to the adjoint representa­
tion (taken twice) and the wave operator F a~ 
transforms contragrediently. 

2. THE SUPPLEMENTARY CONDITIONS 

As supplementary conditions on the O~q.i, o~1/;i we 
choose [ef. (I, 3.10)] 

Ria O~cpi + Ria o~1/;1 = O. (2.1) 
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If these conditions are not already satisfied it is 
easily seen that they may nevertheless be imposed 
by carrying out an infinitesimal group transforma­
tion having the parameters 

o~~a = GsafJ(RifJ O~cpi + Rif3 o~1/Ii). (2.2) 

Under these conditions Eq. (1.18) may be replaced 
by 

(2.3) 

where 

[
s .. . " 
S,ii 

S "j ,OJ 

S,ii 

+ gafl[RiaRi{J RiaRj{j] , (2.4) 

RiaRifJ RiaRjfJ 

ga~ being an arbitrary local symmetric real non­
singular matrix having elements of the commuting 
type and transforming like the Green's functions 
G*"IJ. The matrix gai3 will be used together with its 
inverse g a{J to raise and lower group indices. 

The matrix (2.4) has the same symmetry, reality 
and transformation properties as the matrix formed 
from S,i;, S,lj, etc. Unlike the latter, however, it is 
nonsingular. The proof of this statement is based 
on the assumption that the (R~ R~) constitute a 
complete linearly independent set of zero-eigenvalue 
eigenvectors of the matrix of Eq. (1.13). We may 
therefore adjoin to them another linearly inde­
pendent set of vectors (Rl Rl)' no linear combina­
tion of which are zero-eigenvalue eigenvectors, such 
that the matrix 

[R~ R~] 
R~ R~ 

(2.5) 

is nonsingular. Moreover, under the transformation 

[R:~] [R~]_ G=afi[R:R'fi R:Ril
J
] [R~], (2.6) 

R A RA RaR,{J R"Rj/J RA 

which does not destroy their linear independence, 
these vectors can be made orthogonal to the vectors 
(Ria Ria).8 We assume such a transformation 

already to have been carried out, so that 

(2.7) 

We then have 

8 The locality of the Ral, RfJi, and hence of Fa{J, ensures 
that no problem arises concerning integrations by parts for 
either choice of the Green's functions G±afJ in (2.6). 

OF FIELDS. II. 

which is nonsingular by construction, Since the 
matrix (2,5) is nonsingular, therefore, so is (2.4). 
It will be observed that the conventional notions 
of linear independence and nonsingularity have 
here been extended to anticommuting as well as 
commuting quantities. This extension is perfectly 
justified if proper attention is paid, as we have done 
here, to the ordering of factors, which accounts for 
the occurrence of a number of minus signs. 

The matrix (2.4) is not only nonsingular but is 
a wave operator possessing unique Green's functions 
satisfying 

[
Fik Fik] [G~ki G"'ki] 
FH Fik G"'k; G""ki [

- 0\ 0] 
o -oJ' 

(2.9) 

[
G*:k G .. :kj [Fkj 
G""k G""k Fki 

Fkij = r - 0; 0 .j. 
Fki ,0 - oj 

(2.10) 

That it should possess well-defined left inverses and 
right inverses of the advanced and retarded variety 
follows from its nonsingularity together with its 
locality. That the left and right inverses of a given 
variety should be identical, with the matrix and 
operator ordering taken as in Eqs. (2.9) and (2.10), 
cannot, however, be inferred from the theory of (1) 
which applies only to symmetric (self-adjoint) wave 
operators having elements of the commuting type. 
The generalization of the discussion of (I) which is 
needed in order to cover the case of nonsymmetric 
wave operators having elements of the antic om­
muting as well as commuting type is given in the 
next section. The reality and symmetry properties 
(reciprocity relations) of the Green's functions will 
also be noted there. We merely observe here that 
the G~ij, G"'i j

, etc., must transform contragrediently 
to the F H • F ij , etc. 

The theory of (1) does apply to the wave operator 
F ,,~, which is symmetric by construction and 
possesses elements of the commuting type only. 
Its Green's functions therefore satisfy the reciprocity 
relations 

(2.11) 

Using the Green's functions G"'ii, G"'i j
, etc., we 

may now express the variations o~cp" 0;1/11 in the 
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form 

G~'~] [A.,] 
G"'lJ A.i 

(2.12) 

whenever they satisfy the supplementary conditions 
(2.1). As in (1) we must, for the sake of consistency, 
check that these solutions of Eq. (2.3) in fact 
satisfy the supplementary conditions. Again we 
derive an auxiliary lemma. Writing 

[::: ;::j [~~] 
= [R:Ri a R~Rj a] [R;] = [R~] F ap, 

RRia RRja Rp Ri 
(2.13) 

and multiplying this equation on the left by the 
matrix formed from the G=ii, G=i j, etc., and on the 
right by the Green's functions G=!l,", we get 

[R~]G=f3a = [a=:': a~:~]rR~]. (2.14) 
R~ a=lJ a=lJ [Ri 

The ± signs must go together in this lemma for 
obvious kinematic reasons. 9 The lemma may also 
be written in a transposed form which, when account 
is taken of the reciprocity relations (2.11) and (3.12) 
and the (anti-)commutativity of the various factors, 
is given by 

a=aP(R~ -m) = (R~ R~). (2.15) [
a=ii a='.·J.·]. 
a*lJ a=lJ 

Lowering the index a and applying the result to 
Eq. (2.12), we get 

(Ria Ria)[O;ct<] = ~G:P(R~ _R~)[A'i] 
0; 1/;' A.i 

= ~a:/\A,iRJ + A.;R~), (2.16) 

which vanishes in virtue of the group invariance of 
A [Eq. (1.9)J, thus establishing the self-consistency 
of the supplementary conditions. 

3. HUYGENS' PRINCIPLE AND RECIPROCITY 
RELATIONS 

Consider two arbitrary vectors (ip; ipD, (ip; ip!) 
which appear together with the wave operator (2.4) 
in the following combination: 

cI>;) [Fii' F.. 'j [ip~ 'j Fi; F::, ip{ 
- (ip{' ip;-/Fi'i Fi'ij[ip~jJ d'x'. 

lFj'i Fj'i ip~ 
(3.1) 

9 The integrations by parts needed in the derivation of 
~2.14) cannot be performed if the signs do not match. 

If the functions ip;, ip;, ip~, ip~ vanish sufficiently 
rapidly in remote regions of space-time, the integral 
of this expression over all x will vanish by symmetry. 
Since the wave operator (2.4) is a local matrix 
(i.e., differential operator), this implies that (3.1) 
must be re-expressible in the form 

J d4

x' J d4

x" a;· [(ip;' ip:')[~',',',', .;;::::][:~::jl 
(3.2) 

where the i~, i", r, j ", etc. are certain homogeneous 
quadratic combinations of the delta function and 
its derivatives, with coefficients involving the c/> " 
1/;i and their derivatives, having the same symmetry, 
reality, and (anti-)commutation properties as the 
Fi'i'" Fi'i'" etc. Since equality of (3.1) and (3,2) 
involves the properties of the functions ip;, ip;, etc., 
only locally, it must evidently hold for arbitrary 
functions. Moreover, as long as the ordering of 
factors is left as indicated, the functions ip;, ip;, etc., 
may each be of either the commuting or anti­
commuting type. 

We now introduce the propagation functions 

ra
G,:,' G,jj' == (G" ",' 

Gii lG+ u 
(3.3) 

and write Huygens' principle in the form 

(3.4) 

Here the value at an arbitrary point x of a solution 
of the equation of small disturbances, 

(3.5) 

is expressed in terms of initial values (Cauchy data) 

J il"k" , I"k'" oc/> d4x'" 
[ "' f"'] [ k'''] 
fr'k'" t'r'k'" oyl" , 

on an arbitrary space-like hypersurfacc ~ having 
directed surface element d~",. The proof of (3.4) is 
carried out by changing the surface integral into 
a volume integral (Gauss' theorem) and using 
(2.10), (3.5), and the equality of (3.1) and (3.2). 
For x > ~ the right-hand side of Eq. (3.4) becomes 
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while for x < ~ it becomes 

G-
ik

") 

G- ik " 

G+ ik" 1 
G+ ik" 

(3.7) 

(3.8) 

Q.E.D. The extension of the domains of integration 
arbitrarily far into the future and past, respectively, 
is permitted because the Green's functions them­
selves vanish beyond the point x in each case. 

It will be noted that Eq. (2.10) was used in the 
above proof but not Eq. (2.9). If we therefore take 
(2.10) as the defining equation for the Green's 
functions we may infer the validity of (2.9) through 
the following considerations: Since the OtjJi, oif/ 
satisfy Eq. (3 . .5), and since the Cauchy data (3.6) 
may be chosen completely arbitrarily on ~, it 
follows from the form of Eq. (3.4) that the propaga­
tion functions also satisfy (3 . .5), i.e.,l0 

(3.9) 

Equations (2.9) are then obtained by splitting this 
equation into its advanced and retarded parts. The 
kinematics of these parts ensure that it is only the 
delta functions 0;, 0: or their derivatives which can 
make an appearance on the right-hand side, while 
dimensional considerations eliminate the latter. The 
coefficient of the delta functions is determined as 
-1 from the identity 

I G~:k G~:kl [Fkl FkI] (G~11 G~li] 
l G±lk G~lk Fkl Fkl lG~l' G~li 

= - [~::: ~:::] I (3.10) 

10 That the propagation functions satisfy the correspond­
ing equation with the wave operator standing on the right 
follows already from Eqs. (2.10). 

in which integrations by parts and interchanges of 
orders of integration are permitted by the kine­
matics of the Green's functions only when the 
± signs go together. 

Equations (2.9) and (2.10) together with the 
symmetry properties of the FijI FijI etc., lead to 
the reciprocity relations. We have 

(3.11) 

and hence 

or 

G=ii = GTii G~ij -G~ji, I 
G=ii _G=ji, (;).12) 

Gd _Gii , Gii = Gii , 

Gij = Gii 
. (3.13) 

Careful attention to the ordering of factors is 
important in obtaining these results. We note that 
since Fii is real (Hermitian) while Fij and Fij are 
imaginary (anti-Hermitian) it follows that G~;' and 
G=i j must be real (Hermitian) while G±ii is imagi­
nary (anti-Hermitian). 

If B is any observable we now have 

G~i~J[A,jJ 
G*il A. 

.) 

_G±iij [B 'J 
_G*ij B:: [ 

G=ii 
= e(A . A .) .1 ,J 

_G*ii 

[

GTii 
= e(A . A .) ,1 ,J 

GTli 
G~::J [B.i] 
G~ll B,i 

= o;A, (3.14) 

which is the invariant form of the reciprocity 
relations. 

4. UNIQUENESS AND INVARIANCE OF THE 
POISSON BRACKET 

Following the measurement theoretical arguments 
of reference 2 we define the Poisson bracket of two 
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observables A and B as follows: 

(A, B) == lim.! (o:;B - o~A) 
l-"O € 

= lim.! (o;A - o~A) 
(----JoO € 

= (A,i A,i)[G
i
' G:~][B';l' (4.1) 

Gi
' G'l B,i 

If this Poisson bracket is now regarded as defining 
an actual commutator, we may write 

iCA,B) == [A,B] = (A,i A'i)[[¢>B]] 
[If', B] 

= (A,; A'i)[ [¢> ¢'] _[~i, If,ijl[B'i], (4.2) 
[If',¢'] -(If', Ifl}) B,i 

and it is seen that the commutator may be com­
puted as if the dynamical variables ¢ " 1/;i satisfied 
the (anti-)commutation relationsll 

[¢i, ¢i] = iGii
, (4.3) 

[¢i, lfiJ = -iG ii , (4.4) 

[1/;i, ¢iJ = iGii , (4.5) 

{ Ifi , Ifi} _iGii . (4.6) 

When infinite-dimensional invariance groups are 
absent these are the actual (anti-)commutation 
relations for the dynamical variables, and we note 
that the functions on the right of Eqs. (4,3)-(4.6) 
possess the symmetry and reality properties de­
manded by the (anti-)commutators on the left. 
There remain, of course, questions of factor ordering 
and the proper definition of the propagation func­
tions as quantum operators, but these difficult 
questions will not be investigated here. 

It is important to check the uniqueness of the 
quantities o;B and hence of the Poisson bracket 
(A, B). We note to begin with that these quantities 
are group invariant by construction. This follows 
immediately from our restriction to linear repre­
sentations and our careful choice of the transforma­
tion properties of all quantities appearing in the 
formalism, although it is also true without these 
restrictions. We may in particular show that the 
o;B are independent of the choice of the matrices 
g"iJ, gil, gii' etc. We do this by considering infinites­
imal variations in the latter. We have 

11 The curly bracket denotes the anticommutator. 

[
Fii Fii] = [S'ii 
F i ; Fij S,ii 

S ,,] ,n 

S,li 

and hence, making use of (2.14) and (2.15), 

ora·:' o=:~] 
lG*1! 0=1l 

[

G=ik 

O=ik 
O=ik] [F o kl 

O=ik Fkl 

+ [~~] 0=7" og<xiJG;6(Ri -R~) 

+ [~~]O="iJ(m m) 
-gkl][O=li G=li]. 
- gkl G=l; G=li 

(4,8) 

Inserting this into the equation 

• [G=',',' G=','l,'] [A 'i] , o(o;B) = e(B'i B,i) U 

G=11 G=1l A,i 
(4,9) 

we see that o(o;B) vanishes in virtue of the group 
invariance of A and B [Eq. (1.9)J. The Poisson 
bracket (A, B) is therefore also independent of the 
choice of the g<xfJ, gii, gii, etc. 

In the above derivations it has been assumed that 
the group invariance of the observables A and B is a 
property independent of the dynamical equations. 
Actually, this need not be the case. The Poisson 
bracket of A and B is stilI well defined and unique 
even if A and B satisfy identities of the form 

A,iR; + A,iR~ == S,ia; + S,ia~, 
B,iR; + B,iR~ == S,ib; + S,ib~, 

(4,10) 

(4.11) 

so that they become group invariant only when the 
dynamical equations are satisfied. This fact is of 
importance in the theory of asymptotic invariants 
(see Sec. 6) which are observables of just this type. 
Generally, we shall refer to such observables as 
conditional invariants. It is not difficult to see that 
with the exception of the argument proving the 
group invariance of the Poisson bracket, all previous 
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derivations, including those of all earlier sections, 
go through equally well for conditional invariants. 

The group invariance of the Poisson bracket can 
be proved for the case of conditional invariants with 
the aid of the following lemmas: 

[
S.ik S.ik] [G

k1 Gk~l 
S.ik S,ik Gk1 GkJJ 

_ [R'''R~ R,,,R~l [G
k1 

G
ki

] 

Ri"R~ Ri"R~ G
k1 Gki 

= - [R:"] G"~(m -R~) 1 

R.a 

[
G

ik 
Gik] [R~Ria W"kRi"j 

= - aik Gik R~Ria RkRi" 

= - [~~] Ga~(Ri~ Ri~)' 

(4.12) 

(4,13) 

which are corollaries of Eqs. (2.14), (2.15), and 
(3.9). We first note that the group transformation 
laws for A" and A,i (and similarly for B.i and B,J 
are given by 

SA" == (A.iiR~ + A"iR!) S~" 

= (-A.iR~,i + S.iia~ + S.iia~) S~", (4.14) 

oA.i == (A,iiR~ + A.IjR~) S~" 
(4.15) 

as may be inferred by differentiating Eq. (4.10) 
and making use of the dynamical equations. Only 
the second and third terms on the right of Eqs. 
(4.14) and (4.15), which do not appear in the group 
transformation laws for the derivatives of a rigorous 
invariant, survive in the group transformation law 
for the Poisson bracket. We have, in fact, 

S(A, B) = (a~ _a;)[S'ik S'ik] [G:: G::] [B.i] sr' 
S.ik S.ik G G B.i 

+ (A., A.I)[G:
k 

GikJ[S.ki S'kiJ[b~J' of>. (4.16) 
G· k Glk S,ki S.ki b~ 

But this vanishes in virtue of Eqs. (4.10), (4.11), 
(4.12), (4.13), and the dynamical equations, Q.E.D. 

the transformations 

A' = A + S,iai + S,iai, 

(4.17) 

where a" a\ bi
, bi are arbitrary, we then have, after 

dropping terms in S,' and S. b 

+ (a' _al)[S'ii S.d] [GJ'kk G
ik

] 

S,I; S,li G Gik 

X [S.kl S'kl] [b:] 
S,kl S.kl b 

= (A, B) - (A, i A, i) [~~] Ga~(Ri~ Ri~) l::] 
- (a

i 
-a

l
) [Ria] G"~(R~ -R~) [B.:] 

Ria B.) 

- (a
i 

-a
l
) [S.ii S,:~] [R:] G"fl(Rk~ Rkfl) [b:j , 

S.li S"J R" b 
(4.18) 

which is seen to reduce to (A, B) in virtue of Eqs. 
(1.13), (4.10), (4.11), and the dynamical equations. 

S. THE POISSON - JACOBI IDENTITY 

In order to prove that the Poisson bracket (4.1) 
satisfies the Poisson-Jacobi identity one must pay 
careful attention to the (anti-)commutation proper­
ties, symmetries, and ordering of the factors appear­
ing in the many terms involved. Writing 

[Gil Gil] (A, (B, C)) = (A., A.i) 
Gil Gil 

o [ [G
ik 

G
ik

] [C j] 
X 

&pI (B.i B,;) Gik a ik c:
k 

(5.1) 

S [ [G
ik 

Gikj [C j] - B· B· 
Gik c:

k 
S1// (01 ,J) Gik 

The Lemmas (4.12) and (4.13) may also be used performing the differentiations indicated, taking note 
to show that observables are really defined only of Eq. (1.10), and expanding the matrix multiplica­
modulo the dynamical equations. Thus if we make tions, one encounters 160 separate terms which 
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divide into two distinct groups. The first group 
consists of all terms in which the propagation 
functions remain undifferentiated. There are 32 such 
terms, and these are obtainable from the prototypes 

A,iGilB,;zGikC.k and A.iGilB,;G;kC,kl (5.2) 

by replacing the four dummy lightface indices in 
all possible ways with boldface indices and affixing 
minus signs when required by the conditions of Eq. 
(1.10).12 Adding to these terms the 64 additional 
terms obtained by cyclic permutation of A, B, and 
C, reordering factors judiciously (making corre­
sponding sign changes where necessary), and taking 
note of the symmetries (3.13) of the propagation 
functions, one can readily effect a term by term 
cancellation. 

To carry out a similar procedure for the second 
group one must first obtain expressions for the 
functional derivatives of the propagation functions. 
Making use of Eqs. (2.14) and (2.15) we have 

.-l." [G±;; G± d] 
oljJ G±i; G±ii 

[
G±;! G±ilji.-l._ IFlm 
G=P G±il L oljJk F

lm 

= IG::: G:::] [[S'lmk ~'lmk] + [Rla'k] (R: R:') 
G G S,lmk S,lmk R1a,k 

+ [RIa] (R:,k R:..k)] [G±m' G±m
J

] 

Ria G±m' G±mJ 

and, similarly, taking note of (1.10), 

o [G±i; G±iij [G±il G±ilj 
oll G±ii G±ii = G"il G,,"il 

12 Minus signs are required on the first prototype of (5.2) 
for the following combinations of indices: 

i, j, k, I i, j, k, I i, j, k, I i, j, k, I. 
No minus signs are required with the second prototype. 

[
G±il G±d] [[S 

= G±il G±il S·lmk 
,lmk 

S'lmkj 
S.lmk 

+ [Rla.j (R: -R:') 
Ria. 

_G±lij. 
G±li 

(5.4) 

Inserting these results into (5.1) and making use of 
the identity (I, 1.20) and the group invariance of 
Band C, one sees that only the terms involving 
the third functional derivatives of the action survive. 
There are 128 such terms, obtainable from the 
prototypes 

A.iGiaB,;GibS,bcaGCkC.k8(k, c) 

and (5.5) 

by again replacing the dummy lightface indices in 
all possible ways with boldface indices and changing 
the signs when required by the conditions of Eq. 
(1.10).'3 Adding to these terms the 256 additional 
terms obtained by cyclic permutation of A, B, and C, 
reordering factors (with appropriate sign changes), 
and taking note of the symmetries not only of the 
propagation functions but also of the third deriva­
tives of the action, one again finds a term-by-term 
cancellation. Typical cancelling terms are, for 
example, 

A.iGiaB.iGibS.bcaGckC.k()(k, C)} 
and , 

B,iGiaC.;GibS.bca(}CkA,kO(j, b) 

(5.6) 

13 Sign changes are here required on both prototypes for 
the following combinations of indices: 

i, j, k, a, b, c 
i, j, k, a, b, c 
i, j, k, a, b, c 
i, j, k, a, b, c 
i, j, k, a, b, c 
i, j, k, a, b, c, 
i, j, k, a, b, c 
i, j, k, a, b, C 

i, j, k, a, b, c 
i, j, k, a, h, C 
i, j, k, a, b, c 
i, j, k, a, h, c 
i, j, k, a, b, c 
i, .1, k, a, h, c 
i, j, k, a, b, C 
i, j, k, a, b, c 
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A.iGiaB.iGibS.bcaGckC.kO(k, C) l 
and 

f' 
Therefore 

(5.7) 

etc. 

(A, (B, C)) + (B, (C, A)) + (C, (A, B)) O. (5.8) 

6. ASYMPTOTIC INVARIANTS 

In the practical application of quantum field 
theory it is important to be able to set up boundary 
conditions in the remote past or future. It is essential, 
for the physical interpretation of the theory, to be 
able to do this in a group invariant way, and for 
this purpose one needs to introduce asymptotic 
invariants. 

Let us suppose that the zero points of the field 
variables cf/, if;i have been chosen in such a way that 
the values cf>' = 0, if;i = 0 are classical solutions of 
the dynamical equations corresponding to flat empty 
space-time. It is then possible to expand the action 
in a formal power series14 

S = (1/2!) °S,iitjJicf/ + (1/3!) °S,iiktjJ'tjJitjJk + 
+ (1/2!)(OS.iiif;iif;i + °S.iikif;iif;itjJk 

+ (1/2!) °S.iikZif;iif;itjJktjJl + ... ) 
+ (1/4!)(OS.iiklif;lif;kif;iif;i 

+ °S.iiklmif;lif;kif;iif;itjJm + ... ) 
+ ... , (6.1) 

of which the quadratic terms may be taken as the 
action functionals for "free" asymptotic incoming 
and outgoing fields. These asymptotic fields, which 
will be denoted by tjJ -', if; - i and tjJ +', if; + i, respectively, 
satisfy the dynamical equations 

(6.2) 

Because of the group invariance of the action S, 
the coefficients of the power series (6.1) are not all 
independent of one another. In particular we have, 
setting tjJi = 0, if;i = 0 in (1.13), 

(6.3) 

The °R~ may be regarded as the coefficients of the 
infinitesimal transformation law of an Abelian 
invariance group for the asymptotic fields l5

: 

14 The superscript a standing in front of a quantity indi­
cates that the quantity is to be evaluated with q,i = O,.pi = O. 

15 In the cases of practical interest (e.g., electrodynamics 
Yang-Mills field, gravitation) the °Ri", like the Ri", are 
linearly independent. That is, oRi"or" = 0 if and only if 
or" = o. 

OtjJ*i = °R~ ot", 

Oif;*i = O. 

(6.4) 

(6.5) 

The group parameters ot" must differ, in general, 
from the oC, since an Abelian group cannot be 
mapped isomorphically into a non-Abelian group. 
A relation between the two [Eq. (6.14)] can, how­
ever, be established in the following manner. We 
begin by imposing the supplementary condition 

(6.6) 

on the field variables tjJ' and rewriting the dynamical 
equations in the forms 

o = °S,iitjJi + S,i - °S,iitjJi } 

= °F i1 cf/ + (S,i - °S,iicj/) , 

o = °S.iiif;i + S.i - °S'iiif;i, 

(6.7) 

the general solutions of which may be obtained by 
iteration of 

with 

(6.9) 

The tjJ*\ if;*i here may be identified with the asymp­
totic fields of (6.2) by observing that when the 
dynamical equations S, i = 0 are satisfied, the tjJ*i 
as well as the tjJ' satisfy the supplementary con­
dition (6.6). Writing 

tjJ*i = tjJi - °G*ii(S.i - °S'iktjJk), t 
(6.10) 

if;*i = if;i - °G*ii(S.i - °S'ikif;k), 

and using (6.3) and the Lcmma (2.15) with tjJi = 0, 
if;i = 0, we have, in fact, 

°Ri"tjJ*i = °Ri"tjJi - °G:~ °R~(S.i - °S'iktjJk) 

(6.11) 

Because of the singUlarity of the matrix °S.,i, as 
expressed by Eq. (6.3), a distinct physical solution 
of Eqs. (6.2) is defined only modulo a group trans­
formation (6.4). Such a solution becomes fixed as 
a particular solution of Eqs. (6.9) only when the 
supplementary conditions (6.6) and (6.11) are 
satisfied. Now it is to be noted that these supple­
mentary conditions are conditions on the dynamical 
variables themselves and not, as in Eq. (2.1), on 
their variations. Conditions of this type, in the 
quantum theory, are usually handled by the un­
pleasant expedient of regarding them as conditions 
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on the state vectors of a Hilbert space which is 
bigger than the physical content of the theory 
warrants. What is important for us here is the fact 
that these supplementary conditions are irrelevant 
as far as physical observables are concerned-that 
we can, in particular, construct out of the quantities 
(6.10) a set of conditional invariants which give a 
complete physical description of the asymptotic 
fields, regardless of whether the supplementary 
condition (6.6) is satisfied or not. Performing a group 
transformation on (6.10), we obtain, with the aid of 
(1.15), (1.16), and (2.14), the equations 

&p"'; = R~ or' - °G*"[ -S.kR~.i 

- CFik - om °RkP)R;J o~a 

_ oR; °G=Y~ °RkpR; o~a, 

oif;=; = R~ o~a - °G=ij 

(6.12) 

X (-S,kR~,j - °S,jill;) o~a = 0, (6,13) 

which have the same forms as Eqs, (6.4) and (6,5) 
if we make the identification 

where the dynamical equations S,; = 0, S,i = ° 
are satisfied. 

The cp;, y;=i constitute a complete set of asymptotic 
invariants. Although they are only conditionally 
invariant we know from the results of Sec. 4 that 
they nevertheless possess well-defined (anti-) 
commutators16 and hence have unique representa­
tions in the quantum theory. Moreover, even when 
the cp *i defined by (6.10) do not satisfy the supple­
mentary condition (6.11), and hence do not satisfy 
Eq. (6.9), they nevertheless differ only by a group 
transformation from variables which do, for it is 
not difficult to see that they still satisfy Eq. (6.2). 
Thus 

X (S,kl - °S,kICPI) 

= °S,iicpi + (S,; - °S,iicpi) 

+ °Ria °G=aP °R;(S,k - °S,klCPI) 

= o. (6.17) 

(6.14) The Cp;, y;=i are therefore invariants of the true 
asymptotic free fields and can be used to construct 

Therefore, as the desired set of conditional in- ni tial and final states. 
variants we may choose the quantities 

(6.15) 

where the °Rl are the Rl of the orthogonality 
relation (2.7), evaluated for q/ = 0, if;1 = 0. For 
under a group transformation we see immediately 
that 

&p; = 0, (6.16) 

16 The results of Sec. 4 apply, strictly speaking, only to 
observables, which contain no terms of odd degree in the f±l. 
Nevertheless, the commutators of observables together with 
Eqs. (6.2) suffice to determine uniquely the (anti-)commuta­
tors [q,= A, q,. B], [q,. A, f=ij, If=l, f=j}. It is evident that these 
(anti-)commutators, when the ± signs are taken the same 
throughout, are just those of the free fields: 

["'=A, "'=B] = i °RiA °RiB °Gi;, 
["'=A,f=l] =0, 
If=i, f=j} = -i oGo. 

This can, in fact, be verified by a straightforward calculation. 
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A derivation of the connection between spin and statistics is obtained for spin 0, !, and 1 fields 
with arbitrary loral interactions. The basis used is the Schwinger action principle, whose assumptions 
are specified; they include neither positive energy spectrum nor TCP invariance. The connection can 
be obtained without either of these two extra requirements in most cases. The remaining cases are 
characterized by non-TCP invariant free Lagrangians and nonpositive definite free-particle energies. 
Commutation relations among different fields are also briefly discussed by means of the action prin­
ciple. 

I. INTRODUCTION 

AFTER Pauli's original derivation of the con­
nection between spin and statistics,l a number 

of deductions of this result, using various sets of 
assumptions, have been presented. These derivations 
have removed the restriction to noninteracting fields 
involved in the initial proof. Thus, the work of 
Schwinger2 employed TCP invariance, while the 
approach exemplified by Burgoyne and Luders and 
Zumino3 assumed the existence of a vacuum state 
representing the lowest energy of the system. The 
latter postulate ensures certain analyticity prop­
erties of vacuum expectation values, which together 
with other quite general requirements leads to the 
connection. This elegant method provides a direct 
generalization of Pauli's proof to coupled fields. 
However, in the uncoupled case, the existence of a 
vacuum state was only invoked to forbid Bose 
quantization of charged half-integral spin fields. It 
is therefore of interest to see to what extent one 
may avoid such additional postulates as the energy 
requirement and TCP invariance for coupled fields. 

In this note, we shall start from the Schwinger 
action principle,4 which considers only systems with 
a local Lagrangian, but does not demand a vacuum 
state. An explicit statement of the principle and its 
assumptions is given; as in all other derivations, 
we require that the Hilbert space metric be positive­
definite and consider only the possibilities of com­
mutativity or anticommutativity. We shall divide 

* Supported in part by the National Science Foundation 
and United States Air Force Office of Scientific Researrh. 

1 W. Pauli, Phys. Rev. 58, 716 (1940). 
2 J. Schwinger, Phys. Rev. 82, 914 (1951)., Proc. Nat!. 

Acad. Sci. U. S. 44, 223, 617 (1958). 
3 N. Burgoyne, Nuovo cimento 8, 607 (1958); G. Luders 

ami B. Zumino, Phys. Rev. 110,1450 (1958). 
4 J. Schwinger, Phys. Rev. 82, 914 (1951); 91, 713 (1953). 

the problem into four parts according to whether 
the field is neutral or charged and has integral or 
half-integral spin. Our explicit derivation will be 
made for 0, !, and 1 spins only.s We shall show that 
in all but the massless neutral spin! case and charged 
spin ! case, neither the vacuum assumption nor 
TCP invariance is needed, irrespective of inter­
actions. In these cases, a "wrong" connection leads 
to purely algebraic inconsistencies, reminiscent of 
those originally found by Pauli for free integral 
spin fields. 

II. THE ACTION PRINCIPLE FRAMEWORK 

The action principle,4 upon which our treatment 
of the spin-statistics connection is based, requires 
in its derivation a number of specific postUlates. 
We therefore first list these and discuss briefly their 
nature. The Appendix contains a more complete 
treatment. 

1. The conventional Hilbert space interpretation 
of quantum mechanics, with positive-definite metric 
holds. 

II. The system is invariant with respect to the 
proper orthochronous inhomogeneous Lorentz group. 

III. The characterization of a state at a given 
time and the equations of its time development are 
local in time (i.e., ,ve are dealing with a local field 
theory). 

In order to discuss the remaining postulates, we 
introduce some notation. Let o(a1tl I a2t2) be the 
change of a transformation function6 under infinites-

6 From the structure of the proof, we expect that the gen­
eralization to higher spin fields should be feasible. 

& For simplicity, we are assuming here that out operators 
and states are defined at a fixed time. A more general treat­
ment, in terms of space-like surfaces can, of course, be given. 

637 
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imal transfonnations which alter the complete set 
I A} at time t (here A I alt) = al I all» and move the 
system in time: t -+ t + ot. These changes are 
unitary transformations on the basis vectors 
according to I. Defining the infinitesimal operator 
oW 12 by o(altl I a2t2) == i(a1tl I oW 12 I a2tZ ), (so that 
OW 12 is necessarily Hermitian) we postulate that 

IV (a). There exists a finite operator W 12 such 
that a unique set of variations on its operator form 
yield OW!2 for the classes of transformations con­
sidered above. 

One can show (see Appendix) that W 12 has the 
form of a space-time integral over the region between 
t, and fe, 

W!2 = {' d4xo£(x) 

(with the scalar function £ Hermitian). We further 
postulate that 

IV(b) o£(x) = xA~ O"X - o"xA"x - 3CW + o"W~(x), 
where X is a column symbol whose components are all 
the field variables and A" are constant numerical 
matrices in that space. 7 

From postulate III, JC is a local function, while 
Hermiticity of £ requires the A" to be skew-Hermi­
tian and 3C and WI' Hermitian. The generalized 
Kemmer form assumed above for £ is no essential 
restriction, since any local field system obeying 
second order equations with at most first derivative 
coupling can be described by such a Lagrangian,8 

with 3C(x) independent of derivatives of x. 
In varying W12 to yield the required 0(a l l 1 I a2t2) 

it can be shown (see Appendix) that variations of 
the time t -+ t + b.t and of the field variables 
X -+ X + h must be made throughout the space-time 
region. The relation of these changes to specific 
unitary transformations carried out on the trans­
formation function must be specified in order to 
give meaning to the basic postulate IV(a). We 
therefore assume 

yea) If ot is the time translation carried out 
on the transformation function, then b.t = aCt) Ot, 
a is a c number, i.e., b.t vanishes when no unitary 
transformations corresponding to pure time motion 
are made. 

'Weusethemetric 11". = diag (1,1,1, -1),withLatin 
indices varying over 1, 2, 3, Greek over 1, 2, 3, 0, and natural 
units: n = 1 = C. 

8 If higher derivatives than the first had been present in 
the interaction, one could have adjoined the derivatives as 
new variables to x to reach first-order form; however, the x 
space is then not irreducible, which greatly complicates the 
analysis. We do not consider such couplings in this work. 

V(b) The variation ax" (of the field variable 
XL» in £ either commutes or anticommutes with a 
given field variable x~. 

The most general a priori possibility for b.t would 
be the form b.t = aCt) ot + 0/3, where 0/3 does not 
vanish when a change of basis at fixed time is made, 
i.e., when ot = O. The requirement yea) is thus that 
0/3 = O. It can then be shown that a = 1 and the 
not unexpected result b.t = Ot holds. Postulate 
V(b) is a condition only on the operator nature of 
Bx. Some rule on the operator character of Bx is 
needed to obtain well-defined Lagrange equations.9 

As will be seen, V(b) leads to either commutation 
or anticommutation relations holding between field 
variables and hence is similar to the assumptions 
commonly made in other discussions of spin and 
statistics. At this stage, we may compare our set 
of postulates with other starting points of field 
theory. Assumptions I, II, and V(b) are postulates 
conventionally included in other treatments of field 
theory, while IV and yea) are characteristic of the 
action principle. Postulates III and IV(b) (which 
limit us to local fields) and a final requirement 
VI, to be introduced below, are invoked in all 
discussions of local field theory. 

The above postulates allow us to obtain the 
Lagrange equations from W12 (see discussion in the 
Appendix). One finds 

(- axA" OI'X + ol'xA" ox) 

- m(axBx + xB ax) - 5x o3CI /Ox = 0, (2.1a) 

where we have written 3C = mxBx + 3Cr (x) to 
exhibit a possible mass term for the field. The symbol 
Bx o3C1 / ox stands for 3Cr(x + Bx) - 3Cr(x) and the 
matrix B is necessarily Hermitian. Explicit equations 
of motion can now be obtained by using the com­
mutation relations obeyed by the Bx to move them 
all to one side in Eq. (2.1a), and equating their 
coefficients to zero. For each field of given spin we 
will see that the AI' are all either symmetric or 
antisymmetric. In the symmetric (antisymmetric) 
case, one will obtain equations with space-time 
derivatives only if Bx is taken to anticommute 
(commute). The "wrong" choice of commutation 
relations for Bx then reduces the content of the 
Lagrange equations to 5x o3C/Ox = 0 [since the 
first parenthesis in Eq. (2.1a) vanishes]. This is either 
an identity (0 = 0) or an algebraic relation (con­
straint) among the x's at any time (which mayor 

~ This restriction also guarantees that the quantum La­
grange equations resemble the cLwsical ones in form; more 
complicated relations between variations and fields would 
lose this feature. 
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may not be consistent). In either case, no true 
Lagrange equations arise from use of the "wrong" 
choice. If the "right" choice is taken, one gets the 
standard Kemmer-Dirac equations of motion with 
local interactions: 

(2.1b) 

From our postulates, one finds (see Appendix) 
that the generator of the unitary transformation 
for time translation ('\1 = 1 + iG,) is 

G, = -Hot= -/d'lr[H-xAioiX 

+ a,xAix) + X] at, (2.2a) 

where H is the usual field Hamiltonian. The effect 
of G, on X is to translate it in time by an amount 
at, i.e., 

[X, G,] = ix at. (2.2b) 

Equation (2.2b) is the Heisenberg equation of 
motion. The generator G' of arbitrary unitary trans­
formations at a fixed time may be shown to be 

where 

G x == f d3rHx A o bx - oxA"x) (2.4) 

and h (oWo/Ox) stands for WO(x + h) - WO(x). 
A special case of importance is the choice WO = 0, 
i.e., G' = Gx• The effect of Gx on X is to change it 
by an amount proportional to h. One may express 
this in general by writing 

(2.5) 

where f is an unknown operator. Our final po stu­
late 9a is 

VI. f is a c number. 

The "wrong" choice for h r~duces Gx to zero 
identically, and as we have seen, also fails to yield 
valid Lagrange equations. Hence, we may drop 
this empty possibility and retain only the "right" 
choice of h in accordance with the symmetry 
character of A~. In this case, f is necessarily unity, 
due to the consistency requirement between the 
Lagrange and Heisenberg equations. This result 
arises from the following considerations. The effects 

9. Note added in proof. This assumption is actually deriv­
able from the previous postulates. See, "Note on Uniqueness 
of Canonical Commutation Relations," J. Math. Phys. 
(to be published). 

of the generators G, and Gx are given by Eqs. 
(2.2b) and (2.5). These relations are not independent, 
but are subject to the important consistency require­
ment that the effect of G, on Gx agree with that of 
Gx on G,. We have on the one hand from the action 
of Gx on X that 

-i[GX) H[x]] 

= J d3r[TOO(x - !f bx) - TOO(x)] , (2.6a) 

where TOO is the energy density. On the other hand, 
we may evaluate (2.6a) through the effect of G, on X: 

-i[G x , H] = -i J d3r[xAo ax, H] 

f 3 ° -= d rA X oX. (2.6b) 

Here we have used the fact (shown in the Appendix) 
that h commutes with H. Equations (2.6) express 
AO x as a function of the x's. However, AOx is also 
specified through the Lagrange equations (2.1b) by 
use of which the right member of Eq. (2.6b) may 
be replaced by J d3r[TOO(x - !h) - TOO(x)]. and 
so f = 1 follows from VI. In the Appendix, the more 
general consistency requirements between an 
arbitrary G' and G, are examined and found to allow 
f = 1. 

The equal-time commutation relations among 
x's are established from Eq. (2.5), which reads 
explicitly 

! f d3
r[x', xA ° bx - bxA Ox] 

= h bx', X' == x(r', t). (2.7) 

If A ° is antisymmetric, we have seen that A °ox 
commutes with X, so that Eq. (2.7) becomes 

f d3r[x', x]AO bx = !i h' (2.8) 

For nonsingular A 0, it then follows that 

(2.9a) 

while if A ° is singular, one cannot deduce a simple 
commutation relation between X and x'. A singular 
A ° implies the existence of constraints in the 
theory. 10 Aside from fields, such as the electro­
magnetic one, which possess a gauge group, this 
situation presents no difficulty: as we shall see for 
the explicit cases to be treated, the A Ox turn out 
to be all the independent field variables and one 

10 See for example, reference 4. 
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gets the complete set of commutators from Eq. 
(2.8) : 

(2.9b) 

The electromagnetic field must be treated separately 
(see end of Sec. IV below). For symmetric non­
singular A 0, the result corresponding to Eq. (2.9a) 
is 

(2.10) 

The singular case does not arise for spin ~. We have 
thus found that all fields obey commutations or 
anticommutation relations as a result of postulate 
Yea), and that the equal-time relations are c numbers 
due to postulate VI. 

It should be noted that the equal-time commuta­
tion relations (2.9, 2.10) have been obtained purely 
from the kinetic part of the Lagrangian. The 
symmetry character of B and the nature of XI were 
not involved. We also mention that for each field, 
a complete set of equal time commutation relations 
were found; thus, in the charged scalar case for 
example, we shall get not only [<p', <p +] and [<p', 7r] 
but also [<p', <pl. It is really the last commutator 
which is the "statistics" part of the theorem, i.e., 
the one which allows or forbids more than one 
particle per state. Without a complete particle 
interpretation and a derivation of [<p, <p'l-like rela­
tions, the theorem is not fully established. 11 

III. NEUTRAL SPIN ! 

We begin with the special case of the Majorana 
field with nonvanishing mass. The field equations 
read here 

A~ a"x + mBx + m aJC1 jax = O. (3.1) 

The matrix B is necessarily nonsingular in order 
that a Dirac equation of the form (3.1) exist. The 
Dirac 'Y~ are then formed from A", B according to 

(3.2) 

and the A" must also be nonsingular, since the 'Y" 

are nonsingular. In general, A" = a" + s" where 
8" and a~ are, respectively, symmetric and anti­
symmetric. The variation Bxa is assumed either to 
commute or anticommute12 with a given x~; hence 

11 G. Feinberg has pointed out that the Burgoyne deriva­
tion does not establish the connection for the [<1>, <I>'J relations 
in the charged case. These relations have recently been es­
tablished within the framework of reference 3, however, by 
G. F. Dell' Antonio and by A. S. Wightman (private com­
munication to G. Feinberg). Dell' Antonio's derivation ap­
pears in Ann. Phys. 16, 153, (1961). 

12 By Lorentz covariance, all components 6xa of, say, a 
spinor will either commute with a given X~ or all will anti­
commute. 

the argument in Sec. II implies that in the former 
case only the terms with a", and in the latter case 
only those with s", will survive in the Lagrange 
equations and in the generator. We may therefore 
examine the cases A~ = s", a~ separately. Treating 
first A" = s~, (so that 8"" = - s"), we note that all 
Xa anticommute by Eq. (2.10). Thus the xBx term 
in £ will vanish unless B is antisymmetric, and so 
without loss of generality, we require Jj = -B, so 
that B* = -Bas B is Hermitian. To establish the 
fact that this is the Majorana field, we show that 
one can build up the Dirac algebra from s" and an 
antisymmetric B. This is accomplished by the 
choice B = 'Yo, s~ = -i'Y°'Y~ where 'Y" are the usual 
Dirac matrices in the Majorana representation. 
With this choice, Eq. (2.10) becomes the standard 
anticommutation relation for the Majorana field. 

We show next that the opposite symmetry 
assumption, i.e., A" = a" and consequently 13 = B, 
B* = B, which implies Bose relations by Eq. (2.9a), 
is not possible. In particular we now show that 
Eq. (3.2) cannot be satisfied. From the assumed 
symmetry properties of a", B, and the Majorana 

" (_0 0 _i i) fi d 'Y 'Y = -'Y, 'Y = 'Y one n s 

[B, 'Y0J = 0 = IB, 'Y'l. (3.3) 

Since the neutral spin t field is a 4 X 4 realization of 
the Dirac algebra, B must be constructed from the 
16 Dirac matrices; Eqs. (3.3) require B = 1]'Y0 

(1] a number). However, then 13 = -B, which 
contradicts the assumed symmetry of B. 

The massless case needs separate treatment, since 
there is then no B in £. One is therefore free to 
investigate the possibility of adjoining any matrix 
b to the A~ such that 'Y~ = ib-lA~. Again, the assump­
tion that A~ = s" (the normal case) clearly leads 
to the correct connection, as in the m ~ 0 case, 
with b = 'Yo (the choice fj = b is impossible here). 
The other possibility is A" = a", which leads to 
Bose quantization, for arbitrary b = bB + ba(fj' = b', 
fja = _ba). The symmetry properties of 'Y~ then 
imply that 

[b', 'Y0J + {b a
, 'YO} = 0 

W, 'Yi} + W, 'Y'] = 0 

from which it follows that 

b' = 0, 

(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

where 1] is a real number and 'Y5 'Y0'Y''Y2 'Y3
• The 

commutation relations (2.9a) now read 

[X~, x.s] = -(i/21]h:p Q3(r - r') (3.8) 
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while the action and Hamiltonian are given by 

I = J £ d4
x = J [xrr/"/')'" a.x - XI] d4

x (3.9a) 

H = J [-1']X'Y
5

,),O,),' aix + XI] d3r. (3.9b) 

The field with the properties (3.8), (3.9) has no 
manifest inconsistencies in that the Lagrange and 
Heisenberg equations agree. However, it possesses 
a number of strange features. First, the free Hamil­
tonian is not a positive-definite operator, and states 
with opposite helicity have opposite signs of energy. 
Second, the theory is invariant under neither P 
nor TCP. The Hermitian nature of the field means 
that C invariance holds trivially and so the P non­
conservation cannot be compensated by C. (By 
contrast, the usual massless Majorana field with 
I = J x,),o,," I/i i)"x d"x conserves both P and TCP, 
of course.)13 

To eliminate this case of wrong connection, we 
may therefore invoke the TCP requirement. Though 
Pauli 1 did not originally consider such a field, one 
would have to make the same demand within his 
framework to avoid it. (Alternately, for free fields, 
the vacuum state condition would also be suffi­
cient.) 14 

IV. NEUTRAL SPIN 0,1 FIELDS 

We consider next neutral integral spin fields, 
with or without mass. The zero spin Lagrangian 
in first-order form is 

£ = H4>, a.4>"} - H i).4>, 4>"} 

- Hp?4>2 - 4>.4>") - Xl, (4.1) 

which clearly gives the usual field equations upon 
independent variation of 4> and 4>. (the anticom­
mutators in £ are needed to preserve its Hermitian 
character).15 The Kemmer form (2.1a) of £ is 
obtained by introducing the vector X "'" (4), 4>.), 
so that A· and Bare 5 X 5 matrices. In particular 

(4.2) 

and B is diagonal, with elements H1-I2
, 1,-1, -1,-1). 

13 The theory (3.9) is invariant under chirality transforma­
tions, x ---> -y·x just as is the normal massless Majorana case, 
however. 

14 The appearance of Bose commutation relations may also 
be understood in terms of derivations which assume invari­
ance under TCP. In (3.9) the TCP operation reverses the 
sign of the free part of .£ (instead of leaving it invariant), and 
the connection is reversed. 

16 The other possible Hermitian form, i["" c3.","], is easily 
seen to lead either to no contribution to the dynamics when 
&t>" commutes or to the inconsistency B.", = 0 when a",. 
anticommutes. 

For the neutral spin one case, the Lagrangian reads 

£ = H4>" a.G"'1 - Ha.4>" G'''I 
- t(1-I24>.4>. - W.,G·') - XI (4.3) 

where G'" = - G'· and 4>. are to be varied inde­
pendently. Again, in terms of X "'" (4)1, Got, 4>2, G02 , 

4>3, G03 , 4>0, Gi ;), Eq. (4.3) has the form (2.1a) with 
- - ° A· = -A", B = B, the 10 X 10 matrix A being 

a ° 

° ° 
° 

The matrix B is diagonal, with elements H1-I2
, 1, 

i, 1, 1-1
2
, 1, 1-1

2
, -1, -1, -1). Unlike the Majorana 

case, we have here obtained a particular matrix 
representation for A P

, B directly from the known 
form of the integral spin Lagrangians (4.1, 3). Any 
other representation is reached by a linear trans­
formation on the Kemmer column symbol X = Sx'. 
This replaces A· and B by A·' = SA·S, B' = SBS 
thereby leaving the symmetry properties unaltered. 
The general results of Sec. II show directly that 
only commutation relations can occur. In particular, 
the singularity of A ° only allows one to write the 
form (2.9b). For example, in spin 0, the last three 
components 4>. of X do not enter in A ox, being in 
fact determined from the constraint equations. The 
latter are defined in general to be those equations 
which are independent of time derivatives, and read 
in this case 

(4.4) 

Thus Eqs. (2.9b) represent the usual set of com­
mutation relations between ¢ and ¢o = a£/ael>. 
For spin 1, the four quantities ¢o, G' i are missing 
from A ox, the corresponding constraints being 

a.GO' + 1-12¢0 + aHr/a¢o = ° 
Gi; = a.¢; - a;4>i + aHr/aGi ;. 

(4.5a) 

(4.5b) 

If J.I. ~ 0, Eqs. (4.5) may be solved for ¢o and Gi ;, 

again showing that Eqs. (2.9b) are the usual com­
mutation relations between 4>. and Go;. For the 
electromagnetic case, 4>0 no longer appears in 
Eq. (4.5a).16 Instead, Eq. (4.5a) determines 

16 This is obvious in the first-order formulation of charged 
fields, whose .£, being linear in the derivatives, is therefore 
also linear in (c3. - ieAp). Hence jO "'" - B~ t! BAo is indeed 
independent of Ao. [Elimination of Gi ; in jO by Eq. (4.5b) 
similarly cannot introduce any Ao dependence since B~I / BG i ; 
is independent of Ao.] 
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d,Go, (== V' E) in terms of the other variables 
of the system. Thus, the longitudinal part of E is 
eliminated and the Bose quantization then follows 
in terms of the two independent transverse degrees 
of freedom of the photon. 17 .18 

To summarize, the usual Bose quantization is 
valid for (massed or massless) neutral integral spin 
fields, while the nonoccurrence of symmetric A ~ 
forbids Fermi quantization. 

V. CHARGED INTEGRAL SPIN 

A charged field may be built up from two Hermi­
tian fields by means of a 2 X 2 charge space. One 
simply defines X == (XI' x.), where XI .• are two 
independent Hermitian fields of the type considered 
in Sec. IV. Correspondingly, the dimensionality of 
A~, B is doubled in one of two possible ways. 
Thus, if a~, b are the 5 X 5 or 10 X 10 matrices 
of Sec. IV, then A", B of the charged system arel9 

A" = [~" ~#l B = [~ ~l (5.1) 

or 

A" B (5.2) 

The significance of the two possibilities (5.1, 2) can 
easily be understood in terms of the usual charged 

17 For the first-order form of electrodynamics in the radi­
ation gauge, see for example J. Schwinger, Phys. Rev. llS, 
721 (1959). 

18 The spin-2, zero-mass field may also be put into first­
order form in terms of two transverse degrees of freedom [R. 
Arnowitt and S. Deser, Phys. Rev. 113, 745 (1959)] so that 
here too Bose quantization may be deduced directly. 

19 That the extension to charge space can always be put 
into form (5.1) or (5.2) may be seen as follows. The inde­
pendent 2 X 2 matrices are I, O"i. The matrix I is symmetric 
and is the choice (5.1), while 0"2 is antisymmetric and yields 
(5.2). The other two matrices 0"1, 0"3 are symmetric; by a 
linear transformation in the 2-dimensional charge space, 0"1 

can be reduced to <13 and hence does not yield an independent 
representation. Further, by means of a linear transformation 
in the original vector spaces of the Hermitian XI and X2, one 
may show that the 0"3 representation is equivalent to that 
generated by I, that is, there exists a transformation T such 
that T A oT = - A o. (T simply interchanges canonical coordi­
nates and momenta, e.g., sends </> --> </>0, </>0 ---7 -</> for the scalar 
field.) Hence in the product space 

[1 ~] [A 0 0] [1 0] = [A 0 0] = I ® A 0 

o T 0 -Ao 0 T 0 A O 

and 0" 3 has been mad!' equivalent to I. Finally, we note that 
unless the same charge matrix is used for both A" and B, the 
resulting charged fields, </>, </>+, will not obey the appropriate 
field equation for the spin in question. 

fields rP == (XI - iXI)2- 1
!2 and rP +. Thus, for spin 

zero, choice (5.1) gives (to within a divergence), 
for xA# d#X - d~xA" X, the form 

IrP", d#rP+} + IrP:, d"rP~ (5.3a) 

while choice (5.2) gives20 

(5.3b) 

Any Hermitian form in terms of the rP fields may 
always be written as a linear combination of an 
anticommutator (5.3a) and a commutator (5.3b), 
and so the derivation of the connection for such a 
form is automatically covered in the cases (5.1) 
and (5.2). 

The choice (5.1) leads to the correct Bose quanti­
zation only, since it preserves the antisymmetry 
of A", which is all that was required in Sec. IV. The 
generator Gx of the system with choice (5.1) is 
simply the sum Gx , + Gx.' It leads necessarily, by 
the techniques of the previous sections, to the 
standard Bose relation of each of the x's with itself. 
No commutation relations between XI, and x. can 
be deduced, however. If one wishes to interpret 
the system as a single charged field, then XI and X2 
are coupled through the electromagnetic interaction 
term. The current is, in fact, proportional to 
x.a"xi - x l a"x2 by the usual gauge arguments. The 
choice [XI' xd = 0 (which follows from the choice 
loxI, x2l = 0) leads to the standard charged boson 
theory. The alternative, lxi, xz} = 0 makes the 
current vanish identically (since a# = -a") and so 
it does not give rise to an electromagnetic inter­
action. While no inconsistency arises with this 
choice, the charge interpretation cannot be made; 
one has two electrically neutral fields, which may 
perhaps interact in other ways according to the 
structure of XI' (Conceivably, the choice lxi, x21 =0 
may be required for a particular XI not to vanish.l l 

This would not represent a breakdown of the spin­
statistics connection, since the two fields cannot 
then be combined into a single anticommuting one 
possessing a particle interpretation. 

We now show that the extension to charge space 
according to Eq. (5.2), which can only lead to 
Fermi quantization since the product space A~ is 

20 Note the difference between the form (5.3b) for the 
charged field and that given in footnote 15 for a neutral field. 
Form (S.3b) clearly contributes only for anticommllting vari­
ations. The existence of the antisymmetric matrix B of (5.2) 
prevents the contradiction a"</> = 0 of the neutral case. 

21 A simple, if artificial, example is provided by XI ~ 
X2SXI - XISX2, ~ = s. It should be noted, however, that in 
general, one need not necessarily specify the relation between 
Xl and X2 if XI does not require such a specification. For a 
discussion of this question, see for example G. Luders, Z. 
Nat-urforsch, 13a, 254 (1958). 
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symmetric, is inconsistent. The generator here reads 

Gx = ! J d3r(xA
O ~x - ~xAOx) 

tJ30- 0-="2 d r(xla OX2 - X2a OXI 

- 8x la
ox2 1- 8X2aOXI)' (5.4) 

Since aD = _aD, either {hI.2, xu} = 0 holds or 
else Gx vanishes identically. Alternately, these 
anticommutation relations are necessary in order 
to obtain any field equations from £. Applying Eq. 
(2.3) with X = Xl and hI = 0 one finds 

(5.5) 

and similarly for the independent variables aOx2 of 
the second field. This means, however, that the 
independent components of Xl .2, i.e., (aOXI .2) a square 
to zero, and being Hermitian, necessarily vanish. 
Thus, the usual Bose quantization of charged 
integral fields is alone permitted. 

VI. CHARGED SPIN! 

In this section, we apply our methods to the 
charged spin! field and show that, just as in the 
massless neutral spin ! case, Bose quantization 
cannot be forbidden without further assumptions. 
In building up the charged field from two Majorana 
systems, there are the same two possibilities as in 
the integral spin case, namely, the usual direct 
product I @ A~ (with mass term mI @ B) and 
the representation 0"2 @ A~ (with mass term 
m0"2 @ B). We begin vvith the case of nonvanishing 
mass, and establish first that A~ must be symmetric 
and B antisymmetric, just as in the neutral case. 
This follows from the requirement that the equation 
for the charged field 1/; == Xl - iX2 have as its free 
particle term the Dirac form (-i-l d~ 1- m)1/;. 
Since, as can easily be checked, the Xl.2 have free 
particle parts (A~ a~ 1- mBhI.2 in either charge 
representation, the relation "/ = iB-IA~ still holds. 
The symmetry properties A~ = s~, B = BO (s~ and 
B nonsingular) then follow from the Dirac algebra, 
as in the neutral case. 

It is clear now that the choice I @ s~ leads only 
to the usual correct Fermi quantization of the 
charged field (just as (5.1) did in the normal Bose 
case). The remaining possibility, 0"2 @ s~, however, 
leads only to Bose statistics, since 0"2 @ s~ is anti­
symmetric. In contrast to its analog (5.2), however, 
no algebraic inconsistencies arise from the "wrong" 
statistics but TCP is violated. This may seem 
surprising in view of the derivation in Sec. III for 
the massed Majorana case, where it was shown that 

the Dirac matrices "I~ could not be built up from 
antisymmetric A~. That proof, however, depended 
on the fact that there are only sixteen 4 X 4 matrices 
available for a~, while the 0"2 @ s~ space is now 
8 X 8. The generator Gx is here 

G x = i/2 J d3
r[x 1s

O ~X2 1- 8X2S0XI 

- X2S0 ~XI - 8x,s"xJ (6.1) 

so that the symmetry of SO forces [hl.2, XI.2] = 0 
to prevent the vanishing of G x and of the Lagrange 
equations. Applying Eq. (2.3) with X = Xl and 
hI = 0 we find [xi, Xl] = 0 and similarly for X2' 
Next, taking X = Xl, h2 = 0 in Eq. (2.3), we find 

J d3
r'[xI, x~so 8xiJ = ! axi' (6.2) 

In order to move hI to the same side in each term 
of the commutator in (6.2), we need the commuta­
tion relation of hI with Xl itself. The first possi­
bility, {hI, Xl} = 0, leads to an anticommutation 
relation between Xl and X2' However, at least the 
free part of the Hamiltonian, 

Ho = -i J d3
r[x i s

i 
diX2 - X2Si diXIJ 

1- im J d3
r(x I bX2 - x2bxI), (6.3) 

then vanishes (to within a c number), making the 
Heisenberg equations inconsistent with the Lagrange 
equations. The other possibility, [hI, xil = 0 leads to 

[Xl, x~J = -i/2 o3(r - r') (6.4) 

where we have chosen the representation SO = iI, 
since SO = so, so* = -so. In terms of the charged 
field,1/; Xl - iX2, 1/;+ = Xl 1- iX2, we find 

[1/;, 1/;'J o = [1/; +, 1/; + 'J , 

[1/;+, 1/;'J = o3(r - r'). (6.5) 

Here "I~ = iB-lS~ and B- 1 = "10, which is a possible 
realization of the "I~ as discussed in Sec. III. Further, 
the Heisenberg equations based on Eqs. (6.5) are 
consistent with the Lagrange equations. 

The preceding discussion has thus led to Bose 
quantization of this representation of the charged 
spin ! field, free of any purely algebraic incon­
sistencies. 22 In the free case it is clearly sufficient 

., It should be mentioned here that the Weyl2-component 
neutrino theory may be quantized with Fermi or Bose sta­
tistics since it may be viewed as a special case of the Dirac 
neutrino obtained by projecting with (1 + i'Y5). Alternately, 
one may see this from the fact that one may choose the Weyl 
Lagrangian in the form [f+, <7~ a~fl or i I f+' <7~ a~f). These two 
symmetrizations correspond to use of I or <72 in generating 
the charge space. 
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to demand positive energy, as Pauli l was led to do. 
More generally, however, this case may be elimi­
nated in the interacting situation by invoking 
TCP invariance. For, it is easily seen that the free 
particle part of the Lagrangian is not invariant 
under TCP, since it is invariant under T and P but 
not under C. Also, as is well known, the current 
operator has a positive-definite charge density when 
Bose quantization is used, whereas it must change 
sign under TCP if TCP invariance is to hold. 

Finally, we investigate the massless charged cases, 
which are obtained from the massless Majorana 
examples by use of I or CTz. If A~ is symmetric (so 
that an antisymmetric b must be used to form 
'Y~ = ib-IA~) we have merely the m = 0 limit of 
the massed cases treated above and the same con­
clusions apply. If, however, we consider A~ anti­
symmetric [and hence b antisymmetric by Eq. (3.7)J 
we get the same sort of situation as in the non-TCP 
invariant neutral massless field, so that we are 
here building up the massless charged field from 
such massless neutral ones. Of the two possible 
charge representations, the CT2 choice leads to a null 
theory: In this case (which is TCP invariant) the 
combined symmetry of CT2 @ 'Y5'Y0'Y~ implies Fermi 
quantization. We obtain then, the anticommutation 
relations {tf~, tf;} = i/2'Y:~ (nr - r') for tf == 
Xl - iX2, whose spin trace implies that x~ + x~ = 0 
and so that Xl = 0 = Xc. On the other hand, the di­
rect product I @ 'Y5'Y0'Y~ clearly behaves just like the 
neutral case, namely we have £ = H tf +, 'Y5'Y°'Y~atf}, 
W, if; +] = -i/2'Y5 b3 (r - r'). Both TCP and positive­
definiteness of the free Hamiltonian are violated, 
Bose quantization is not inconsistent, and so again 
the requirement of TCP invariance may be used to 
exclude this final case. 

VII. COMMUTATION RELATIONS BETWEEN 
INDEPENDENT FIELDS 

We discuss briefly the commutation relations 
among different Hermitian fields. For kinematically 
independent fields, i.e., systems which can be 
characterized by 

£ = ! L: {x(i)A~i) a"x(i) - a"x(i)A~i)x(i) I - JC, 

the generator Gx is also a sum of independent terms. 
Hence Eq. (2.5) yields no information about the 
relations between Xli) and X(-y) (i ~ j); that is, from 

J 3[ 0- -d r x;, XiAi ox;] = {jiX~ = 0, (i ~ j) (7.1) 

alone, one can obtain either [Xi, X;] = o or 

{X;, x:l = 0 depending on the choice of relations 
between hi and Xi' The mechanism which imposes 
further restrictions in this formulation is the con­
sistency requirement between Gx and JC, i.e., 
between Heisenberg and Lagrange equations. For 
example, consider two uncoupled Bose hermitian 
fields Xl, X2 so that JC = JCOI (Xl) + JC02 (X2) + X;. 
The Lagrange equations for Xl require no knowledge 
of the hI> X2 relations. On the other hand, the 
Heisenberg equations, Xl = i[H, Xl] involve [Xl' X~] 
so that Xl must commute with X2 for consistency. 
For general JC, the consistency requirement leads 
to commutation conditions identical to those 
previously given by Luders. 23 

For some interactions, the above consistency 
conditions do not restrict the relations between 
kinematically independent fields. However, making 
one or another choice (when either is allowed) can 
alter the physical interpretation of the theory. An 
example was given in the charged integral spin 
case, where it was seen that {Xl' x~l = 0 implied 
the vanishing of the current operator, and so that 
XI,2 were two neutral Bose fields (possibly inter­
acting), rather than the components of a single 
charged field cp = Tl/2(Xl - iX2)' In this connection, 
one might note that Burgoyne's proof3 led auto­
matically to W, cp +] = 0, (r ~ r'), whereas in our 
analysis this result holds only if the choice [Xl, X~] = 0 
is taken. The difference lies in Burgoyne's interpreta­
tion of his assumption that all quantities either 
commute or anticommute: he treats the charged 
fields cp, cp + (rather than Xl and X2) as the entities 
which obey only one of the two possibilities (as is 
indeed the characteristic of the correct charged 
field). In our analysis, the relations between Xl and 
X2 may, a priori, differ from those of each field with 
itself, which makes the noncharged possibility also 
available. 

VIII. CONCLUSIONS 

In the present derivation of the spin-statistics 
connection, emphasis was put on the separation of 
the usual TCP invariance and vacuum state (E ~ 0) 
requirements from the conventional assumptions of 
local field theory. It was found that for all spin 0 
and 1 fields and the neutral massed spin! fields, the 
correct connection could be established purely 
from the algebraic form of the free particle part 

23 Luders21 started from the requirement of local Heisen­
berg equations. We demand consistency between these and 
the (by assumption local) Lagrange equations, so that the 
two approaches are essentially the same. Within the frame­
work of the axiomatic method, H. Araki [J. Math. Phys. 2, 
267 (1961)] has obtained the independent field relations. 
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of the Lagrangian, without recourse to the TCP 
or E ~ 0 requirements. Actually for these fields, 
it is the case that the free parts do satisfy TCP and 
E > O. For the remaining spin! cases, it was found 
th~ both connections occurred (as was the case 
in Pauli's original free field derivation). However, 
those cases for which the wrong statistics held were 
characterized by lack both of TCP invariance and 
of E ~ 0 in the free particle part of the Lagrangian. 
Hence these cases could be eliminated either by 
requiring TCP invariance or E ~ 0 solely for the 
free particle parts. 

It is curious that the energy requirement is to be 
imposed on the free particle part of the energy rather 
than on the more physically meaningful total energy. 
This might appear more understandable if, as has 
been suggested, the sign of the total energy is 
always the sign of the kinetic energy. The signif­
icance of the alternative requirement, TCP in­
variance seems somewhat more puzzling from the , 
present approach. Invariance of a local field under 
TCP is a consequence of both proper Lorentz 
invariance and the assumption that the correct 
connection holds.24 Consequently, a priori accept­
ance of TCP invariance is not so straightforward 
from the present point of view, and may be regarded 
as an empirical question. On the other hand, the 
fact that one need impose TCP only on the free 
particle part of the Lagrangian is reasonable. For, 
as we have seen, the latter requirement yields the 
correct connection which then implies TCP in­
variance for the total Lagrangian.24 
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APPENDIX 

A discussion of the postulates needed in the 
Schwinger action principle4 is given here. We begin 
with some definitions and notations concerning 
unitary transformations on the basis vectors la') 
of a complete set of operators {A i I (A i I a') = a~ I a'») 
in Hilbert space. Let an infinitesimal unitary trans­
formation be 'U == 1 + iG where G+ = G. If we 
denote the transformed ket by I a') == 'U -1 I a'), 

.. See for example, G. Ltiders, Ann. Phys. 2, 1 (1957). 

then the change in the ket due to the unitary trans­
formation, 0 I a') == I a') - I a'), is given by 
o i a') = -iG I a'). The matrix elements of any 
operator B then change according to 

o(a' IB I a") == (a' IB I a") - (a' IB I a"). 

If we define the operator ooB by o(a' I B I a") -
Ca' I ooB I a"), one has ooB = -i[B, G]. Thus the 
change of the matrix elements of an operator due 
to a change of basis can equivalently be represented 
by a change of the operators in the old basis. 

If {Ad represents the complete set fo!, the 
original basis I a'), then the complete set, {Ad for 
the transformed basis (A; I a') = aj I a'» is related 
to A by A = 'U -lA 'U = A - ooA. In accordance 
with the conventional physical interpretation of 
Hilbert space, one must associate, at any time t, 
a complete set of Hermitian operators {Ai(t)} to 
a complete set of compatible observables. The 
simultaneous eigenkets of Ai(t), i.e. I a't), form a 
basis which moves in time. 6 According to the 
probability interpretation, the bases at different 
times must be related by a unitary transformation. 
(The assumption of a positive-definite Hilbert-space 
metric is used here. This assumption is also used 
explicitly in some of the derivations given in text.) 
For the transformation representing an infinitesimal 
time translation (denoted by G = Gt ) one has then 
that A = A(t + ot) = A(t) + A ot. Hence, 

A(t) ot = i[A(t), G,(t)] (Ala) 

since ooA = -irA, Gt] for this case. Equation (Ala) 
is the Heisenberg equation of motion. The corre­
sponding basis vector equations of motion read: 
Ot(d I a't) I dt) = -iGt(t) I a't). 

The general variation of the transformation 
function to be considered here, oCal t1 I a2t2), consists 
of changes of the bases due to their time motion 
plus variations due to changes of the complete 
set at a fixed time. Both variations are generated 
by unitary transformations so that 

(A2) 

Here GCt) consists of two parts: one, the time 
translation generator G, moving the system in time 
(keeping the same compatible set of measurables 
but at the displaced time), and a second part, G', 
generating the changes of bases possible at a fixed 
time (where the measurables are changed but the 
time is fixed). The change of the complete set 
generated by G' (i.e., A ~ A = A - ooA) is clearly 
given by 
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ooA = -i[A, GfJ. CAlb) 

For a field system, any complete set, I Ai}, and 
hence the function G relating two complete sets, 
must depend only on the field variables Xa' We 
now invoke the condition that we are dealing with 
a local field theory. This implies that complete sets 
A(t), at time t, can be constructed from the field 
operators xaCt) at that t [i.e. G'(t) depends only on 
Xa(t)]. Similarly, the future behavior of the kets 
and operators must be determined by the field 
variables at time t, i.e., Gt (t) depends only on 
XaCt) (so that the dynamical laws be local in time). 
In general then, G(t) = G[x(t)] is a local function, 
in time, of Xa(t). 

We now define the Hermitian operator BW,2 by 
the equation 

B(a,t , I a2 t2 ) == i(a,t, I OW'2 I a2t2) (A3) 

At this stage, OW,2 depends only on variations at 
the end point times t, and t2 , according to Eq. (A2). 
However, we may divide the time interval (i" t2 ) 

into many subintervals; the transformation function 
can then be represented by products of functions 
between the subintervals: 

(a l t, I a2t2 ) = L: (a,t, I a3 t3 ) 

X (a3 ta I a4 t4 ) •• , (antn I azt2 ). (A4) 

In varying (a,t, I a2t2) as expressed by the right­
hand side of Eq. (A4) , we can clearly make arbi­
trary unitary transformations on the bras and kets 
at the intermediate times, since such effects cancel 
out in the sum. In particular, one may consider 
interior variations in conflict with the actual time 
development. (For example, these intermediate vari­
ations may be generated by a Gt not proportional to 
the correct Hamiltonian.) On the other hand, the 
variation of Eq. (A4) leads to a sum of terms of 
the form 

am ,am +1 

X o«amtm I am+ltm+I»(a",+,tm+1 I a2 tZ) 

= i(a,t1 I BW m.m+l I aztz) (A5) 

according to the definition (A3). This shows that 
OW'2 may also be viewed as a sum of terms in­
volving variations at the intermediate times, or, 
in the limit as the subintervals become infinitesimal 
in size, BW'2 becomes a time integral between t2 
and t,. 

We now make the basic postulate that BW'2 is 
the variation of a finite operator W'2, i.e., that the 

variations of the transformation function that we 
afe considering are to be obtained by making 
appropriate variations25 or W'2' (The nature of 
these variations will be found below). Since W'2 
is a time integral, we may write 

W ,2 = {' d4
x £(x), (A6) 

where £ must be a Hermitian operator. Comparing 
Eq. (A2) with Eq. (A3) gives 

a {' d4x £(x) = G, (t I ) - G2(l2)' (A7) 

In Eq. (A7), variations of W'2 can be made in the 
interior as well as at the end points, since arbitrary 
unitary transformations are allowed at interior time 
when varying the right-hand side of Eq. (A4) 
[as expressed in Eq. (A5)]. As G(t) is a local function 
of Xa(t) in time, Eq. (A7) represents a quantum 
Hamilton's principle for obtaining Lagrange equa­
tions of motion (this will be shown below). 

We now make the further postulate that £(x) 
has the form 

£ (x) = !(xA~ a"x - a~xA"x) 

(AS) 

where X is a column symbol whose components, 
Xa(x), are Hermitian field operators and A~ are 
constant square matrices in the X space. Hermiticity 
of £ is obtained by requiring that A~+ = -A", 
JC+ = JC, W"+ = W". In order to have Lorentz 
invariance, we require that JC be a scalar and W" 
a four-vector. Note that for invariance under the 
inhomogeneous Lorentz group to hold, neither 
JC nor W" can depend explicitly on x". The assump­
tion of the form (AS) for £(x) stems from the fact 
that the equations of motion for any Lorentz 
covariant field system involving fields of definite 
spin in local interaction may be obtained by varying 
a Lagrangian of the above "Kemmer-Dirac" type. 
The a" W" term represents the usual freedom avail­
able of adding an arbitrary divergence to a 
Lagrangian without changing the equations of 
motion. 

The action principle (A7) becomes well defined 
when the variations of W'2 to be taken are specified. 
As discussed above, the variations of the trans­
formation function (a,t, I a2t2 ) under consideration 
involve changes in all the variables on which it 

25 We have restricted the analysis to variations correspond­
ing to unitary transformations. The postulate can be shown 
to be also valid for certain other ehanges, slIch as source 
variations. 4 
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depends, namely, the time26 
(t ----+ t + 8t(t» and 

the basis vectors (through the change in the com­
plete set of operators). In general, irrespective of 
whether it is the variation of a finite operator W 12 , 

the operator 8W12 may be written as Lm 8W m,,,.+l 

in the notation of Eq. (A5), Further, the infinites­
imal operator 8W m,,,.+l must have the form 

J
'm 

8W m,m+1 = [Z,(t; x(t» 8t 
tm +1 

+ Z2(t; X(t) ~X] dt. (A9a) 

The right-hand side expresses the most general 
form possible for the operator 8W to yield the class 
of unitary transformations in the Hilbert space 
contained in the variation of the transformation 
function. Thus the term proportional to 8t must be 
present, since changes t ----+ t + 8t are being con­
sidered, while the term proportional to the as yet un­
defined parameter ~x has been included to account 
for the change of basis at fixed time (when 8t is zero), 
i.e., for the change of the complete sets of operators. 
[In fact, even with a pure time translation, there is 
necessarily associated a change of the complete set 
{A(t)} ----+ fA = A(t + 8t)1. so that for this special 
case, we will see that ~x is proportional to 8t itself.] 
We now invoke the integrability postulate that 
there exists a W ,2(t; x), depending on the time and 
the field variables, so that its general variation 
consists in changing these arguments, Thus to have 
the form (A9a) arise from varying W 12 we will 
assume that27 

8Wl2 = Wet + 8t, x + 8'x) - Wet, x)· (A9b) 

The remaining problem, then, lies in finding the 
form of 8'x for a given variation of the transforma­
tion function (altI I a2tZ), (i.e., for a given infinitesimal 
unitary transformation). 

The explicit variation of W I2 reads 

8W 12 = J d'x[{8x· A • a.x - a.xA• 8x - 8x aX/ ax} 

+ 8t(t) dToO /dt] + J d3r [iexA ° 8x - 8xA Ox) 

+ 8x(aW°jax) - M(t)TOO]:: 

where 8x == 8'x + X 8t and 

TOO = Ha,xAix - XAi aix) + x. 
----

(A9c) 

26 For simplicity, we are not varying the spatial coordi­
nates Xi. Their variation would lead to the spatial transla­
tion operators (field momenta). 

27 Strictly speaking, the general form of 5W is W(t + t:.t; 
x + ax) - W(t; x) where t:.t has a nonvanishing part even 
for 5t --> 0, i.e., t:.t = a(t)5t + 5{3. The assumption made in 
(A 9b) is that 5{3 = O. Invariance under time translations 
implies that a is a constant, which may be set to unity by a 
choice of units. 

The symbol 8x ax/ax means JC(x + 8x) - x(x). 
The condition that 8W 12 depend only upon end­
point variations implies the vanishing of the first 
integral: 

J d4
x[8xA• a.x - a.xA• 8x - 8x ax/ax] 

+ J dt M 1t H = 0, CAlO) 

where H == f TOO d3r. The generator G(t), which is 
obtained from the end-point terms of Eq. (A9c) , 
according to (A7), is 

G(t) = J d3
r[HxA ° 8x - 8x A \) 

+ 8x awn/ax] + 8tH. (All) 

We consider first the case of no time motion, 8t = 0, 
and obtain the generator 

G'(t) = J d3r[!(xA ° bx - BxA Ox) 

+ bx aw°jax] , (A12) 

where Bx denotes the value of 8'x for 8t= O. The 
generator G' must give rise to all possible fixed-time 
infinitesimal cannonical transformations. The form 
of G' clearly changes by changing WO, so that WO 
must be regarded as an arbitrary function which 
generates the various possible bases. Further, the 
variation Bx must necessarily be arbitrary at every 
space-time point. 28 This will allow one to have the 
freedom of generating different cannonical trans­
formations in each of the independent mutually 
spacelike degrees of freedom of the field at time t. 
The Lagrange equations may now be obtained from 
Eq. (AlO) by setting 8t = O. One has then that 

(bxA· a.x - a.xA• bx) - bx ax/ax = o. (,\13) 

In order to obtain explicit Lagrange equations of 
motion, some condition on the operator properties 
of Bx is required since Bx need not be a c number in 
a quantum theory. We postulate that Bxa either 
commutes or anticommutes with the field operators 
Xb. With this assumption, one may move all the 
Bx either to the left or to the right side and equate 
the coefficient of Bxa to zero. The condition of 

28 Unless 5x is arbitrary in its time dependence [so that 
we may choose it proportional to 5(0], one would obtain from 
Eq. (A 10) a set of equations of motion nonlocal in time, 
instead of the local Lagrange equation (A 13). The postulate 
of time-locality of the dynamics forbids this. Lorentz-invari­
ance then requires that 5x also be arbitrary in its spatial 
dependence. Note also that 5' x is the t:.x of the general 
discussion of Eq. (S.9a) when Eq. (S.!lb) has been postulated. 
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commutation or anticommutation on ~x eventually 
leads to either commutation or anticommutation 
relations between the field operators themselves, 
and is an assumption conventionally made also in 
other derivations of the spin-statistics connection. 29 

Let us now ask for the part of 0 that generates 
pure time translations (with no change of the com­
plete set at time t), i.e., G,. This means that we 
must restrict our variations ox to those appropriate 
for a time translation. The generator G, gives rise 
to the Heisenberg equations of motion (Ala) which 
should give a well-defined statement of the future 
dynamical motion of the system. On the other hand, 
the arbitrary function WO enters in Eq. (AI2) 
(while the dynamics described by the Lagrange 
equations (Al3) is independent of W"). We conclude, 
therefore, that ox must vanish for pure time motion, 
i.e., 

o'x -x ot = oox. 

This leads to 

G, = -H ot (Al4) 

and from (Ala) the usual Heisenberg equations of 
motion A = -irA, H] where H is the conventional 
field Hamiltonian. Also, we note that imposing the 
the condition ox = 0 on Eq. (AlO) gives rise to the 
consistent resul eo dH I dt = O. 

We turn now to the determination of the prop­
erties of G'. More precisely we will find the unitary 
transformations which G' generates and this informa­
tion will yield the field commutation relations. In 
fact, a knowledge of the transformation generated 
by Ox == G'(WO = 0) is adequate to determine the 
properties of the general case. Thus, in the notation 
of Eq. (Alb), we write generally, oox tfh for 
the changes generated by Gx> i.e., 

[x (r)G x] = !if ~x(r) (A15a) 

where I is at present unknown,31 and may even be 
an operator function of x. Thus Ox generates the 
transformation 

x ~ X = x - !f ox· (A15b) 

2. Note that this restriction on ax means that in our dis­
cussion of G', there was no possibility of obtaining the in­
finity of different transformations by different choices of ax 
(due to its simple 'Ie number" nature). The generality of 
different WO's is therefore indeed necessarv. 

ao With a more complete treatment involving space like 
surfaces and general coordinate variations (4-) ox", this term 
gives rise to the local conservation laws a,T"" = O. 

a1 The operator f is necessarily coordinate independent: 
Translational invariance requires that fer, r') = fer - r'), 
while its oa(r - r') coefficient shows that only f(O) enters. 
[See Eq. (A16) below.J 

The commutation relations then follow from32 Eq. 
(Al5a), using the fact that her) is an arbitrary 
function which either commutes or anticommutes 
with x(r): 

(Al6) 

As discussed in Sec. II, the bracket in Eq. (AI6) is 
a commutator (anticommutator) when A ° is anti­
symmetric (symmetric). These complete commuta­
tion relations enable us to evaluate the commutator 
of X with any function. In particular, one can find 
the analog of Eq. (A15b) for an arbitrary 

0' = Gx + J d3r ~x(aWOjax) 

where h(aWOjax) is shorthand for WO(x + h) 
WO(x). In the discussion below, it will be con­
venient to consider WO as a function of A Ox [i.e., 
WO = WO(A Ox)] since these are the independent 
field variables (even when constraints exist). We 
restrict ourselves to WO's which are even in the 
anticommuting field variables. 33 In this case, one 
finds by d,irect computation [using Eq. (AI6)] that 
G' generates the change 

x(r) ~ x(r) = x - !f ~x 
- ! a2WOja(AOx)2AOf ~x, 

where a2wo j a(A °x)2!iA °/h stands for 

17 -l[WO(A ox' + A ° ox' + !iA °17f) - WO(A \, 

(AI7) 

+ A ° h') - WO(A oX' + !iA °17f) + WO(A Ox)] (AI8) 

The 17 appearing in (AIS) is a new infinitesimal 
which commutes or anticommutes with X and h 
[according to the sign in (Al6)] and is to be moved 
to the left and canceled to obtain the explicit form. 
The operations in (AI8) reduce to the usual defini­
tion of second derivative in the commuting situa­
tion, and provided the correct rule in the other case 
as well. 

Information on the allowed type of I comes from 
the requirement that G' and Ot be mutually con­
sistent, and that Gt be consistent with the time 
development as given by the Lagrange equations. 
To see this, we first consider [H, Gx ] which by 
(Al5b) is 

a2 We have assumed that the matrix AO is nonsingular (i.e., 
no constraints are present in the theory). When A 0 is singular, 
the discussion still follows in terms of the independent vari­
ables A ox, using the result fA ox, A °x'J= = (i/2) A °fo'(1 - r'). 

aa As noted above, the anticommuting case arises when A ° 
is symmetric and so, as discussed in text, only for spin t. 
Lorentz invariance then requires that tensor quantities such 
as W" contain even powers of x. 
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-i(H[xJ - H[xJ) 

= -i(Hix - f/2 BxJ - H[xJ) 

= H[x + ~f BX] - H[x]. (AI 9) 

On the other hand, this evaluation must agree 
with the fact that H generates time translations. 
Thus 

J [H, xAoJ h d3r 

+ J xAO[H, BxJ d3r. (A20) 

The commutator [H, hl must vanish for all h. 
For, in the anticommuting case, one obtains from 
it a contribution due to parts of H which are odd 
in the anticommuting fields. However, such parts 
of H would also yield nonlocal contributions to the 
Heisenberg equations of motion (AI9), and so con­
tradict the local Lagrange equations. No such terms 
may appear in H, then. 33 The remaining term on 
the right in (A20) involves xA ° by Eq. (Ala), and 
so by the Lagrange equations (AI3), we get 

[H, Gx] = H[x +!i hJ - H[x]. (A2I) 

Though the required consistency between Eqs. 
(A2I) and (AI9) strongly restricts the form of j, 
it does not permit one to conclude that f = 1 since 
H is not an arbitrary function of X (and h is not 
sufficiently arbitrary, since it only commutes or 
anticommutes with x). Indeed, as has been noted 
by Wigner,34 the consistency of the Lagrange and 
Heisenberg equations does not uniquely determine 
t for the simple case of the one-dimensional har­
monic oscillator, but restricts it in the form f = 
1 + (2Eo - 1) exp [i7r(H - Eo) 1 in units where 
hw = 1. Here Eo is the ground-state energy which 
is now arbitrary. In fact, in the one-dimensional 
case at least, such an indeterminacy exists in a large 

2 3 number of cases (for example, V = !x + AX). 
Further, j = 1 cannot in general be forced even 
when the same consistency requirement is imposed 
on the full generator G'. Thus, calculating [H, G'l 
as was done for [H, Gx], using the results (A17, 18), 
one finds the analog of (AI9) to be 

34 E. P. Wigner, Phys. Rev. 77, 711 (1950). 

[H, G'J = Hix + !if BX 

+ !i a2WOla(AOX)2AOf hJ - H[xJ 

while (A21) is replaced by35 

[H, G'l = e- 1 J d3r[W(A Ox + .40 OX 

+ !e oHIBx) - W(AOX + AO OX) 

- W(AOX + !e oHIBx) + W(AOx)l. 

(A22) 

(A23) 

where e is a c number infinitesimal, and !oH I h has 
been inserted for A Ox by the Lagrange equations. 
The symbol oH I h is defined by 

oH == H(x + Bx) - H(x) = J d3r h(x) oHI h(:r). 

For all classical fields, the right sides of Eqs. (A22) 
and (A23) are trivially seen to be consistent only 
is the choice j = 1 is made. However, for quantum 
fields, it is not even obvious that these equations are 
consistent with f = 1. This is due to the fact that the 
order of operators in each equation is entirely dif­
ferent, so that the comparison can only be made after 
a large number of operator reorderings has been 
carried out (using the field commutation relations 
(AI6)]. However, a somewhat tedious calculation 
(considering the general power series terms of H 
and WO) establishes that, for j = 1, the results 
are indeed consistent.36 Thus, the full generator G' 
is consistent with the possibility originally allowed 
by Gx alone, that j = 1. The above results do not 
of course establish the necessity of j = 1. The Wigner 
example for f in the harmonic oscillator case turns 
to still yield consistent results between (A22) and 
(A23) , although we have not investigated whether 
j ~ 1 is still possible for other potentials. Since it is 
impossible to deduce that f must be 1 for all sys­
tems,9a we add the consistent postulate that f = 1. 
Only in this way does the value of the fundamental 
commutator remain unchanged under change of 
basis. It is to be noted, however, that if one just 
assumes f to be a c number, the consistency between 
(A19) and (A21) is adequate to ensure that f = 1. 

35 Equation (A23) is obtained by taking the time deriva­
tive of IlWo, and using the Lagrange equations to replace 
AOx by IlHlh. 

36 That is, all extra commutators arising in reordering one 
of the equations into the other's form cancel. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 4 JULY-AUGUST 1962 

Mass Singularities of Feynman Amplitudes* 

TorCHIRO KINOSHITA 

Laboratory of Nuclear Studies, Cornell University, 
I thaca, New York 

(Received January 4, 1962) 

Feynman amplitudes, regarded as functions of masses, exhibit various singularities when masses of 
!n.ternal ~nd external lines are allowed to go to zero. In this paper, properties of these mass singular­
ItIes, whICh may be defined as pathological solutions of the Landau condition, are studied in detail. A 
general method is developed that enables us to determine the degree of divergence of unrenormalized 
Feynman ampl~tl!des at suc?singul~rities. It is also applied to the determination of mass dependence 
of a total transItIOn probabIlIty. It IS found that, although partial transition probabilities may have 
divergences. associated wi~h the vanishing of masses of particles in the final state, they always cancel 
each other In the calculatIOn of total probability. However, this cancellation is partially destroyed if 
the charge renormalization is performed in a conventional manner. This is related to the fact that 
interacting particles lose their identity when their masses vanish. A new description of state and a new 
approach to the problem of renormalization seem to be required for a consistent treatment of this limit. 

I. INTRODUCTION 

FOR any Feynman diagram, the corresponding 
transition amplitude is a function of scalar 

products of external momenta and masses of various 
internal lines. Analyticity of amplitudes regarded 
as functions of external momenta has been clarified 
considerably in the last few years. In these con­
siderations, masses of internal lines are usually 
treated as parameters fixed to their observed values. 
However, it has been noted that some aspects of 
analyticity may be understood more clearly if the 
amplitude is continued analytically with respect to 
its masses.! For a complete characterization of 
Feynman amplitudes, it will be necessary to treat 
both external momenta and internal masses as 
(complex) variables. In this paper, we should like 
to see what happens to the Feynman amplitude when 
the domain of mass variable is extended along the 
real axis. In particular, we are interested in the 
singularities of amplitudes which are encountered 
at the origin of mass variables and at essentially 
arbitrary values of external momenta. To dis­
tinguish these singularities from the usual poles 
and branch points in the complex plane of energy 
or momentum transfer, let us call them mass 
singularities. We want to find out all possible mass 
singularities of Feynman amplitudes and determine 
in particular whether or not the amplitudes are 
divergent at the mass singularity. 

One of the familiar examples of mass singularity 
is the so-called infrared divergence that appears in 

* Supported in part by the joint program of the Office 
of Naval Re~earch and the U.S. Atomic Energy Commission. 

! See for Instance R. E. Cutkosky, J. Math. Phys. 1 429 
(1960). ' 

connection with the vanishing of the photon mass A. 
The divergence of the total cross section for Coulomb 
scattering is also an example of this sort. There is 
another mass divergence that is even more common 
than the infrared divergence but is rarely referred 
to as such. It is the logarithmic divergence associ­
ated, for instance, with the vanishing of the electron 
mass m in quantum electrodynamics. Of course 
the observed electron mass is different from zero. 
Nevertheless it will be useful to consider the zero­
mass limit since the behavior of Feynman amplitude 
for small m or high energy is determined to a large 
extent by its mass singularities. 

These mass singularities have a remarkable 
property that divergences of partial transition proba­
bilities associated with vanishing masses often cancel 
each other when they are summed into a total transi­
tion probability. This behavior is, of course, well 
known for the infrared divergence.2 For other cases, 
however, the cancellation is more subtle and incom­
plete in general. Thus, it was not recognized clearly 
as a general property of Feynman amplitudes until 
a few years ago when a detailed calculation was 
carried out on radiative corrections to weak inter­
actions, such as the jJ.-e decay, {3 decay, and 7r-jJ. 

(or 7r-e) decay.3 In these calculations, it was found 
that the (unrenormalized) total decay probability 
docs not contain any divergent term like In A or 

2 We quote here only two papers that appeared most 
recently: D. R. Yennie, S. C. Frautschi, and H. Suura, 
Ann. Phys. 13, 379 (1961); K. E. Eriksson, Nuovo cimento 
19, 1010 (1961). We note however that the present work 
should be regarded as an extension of earlier works quoted in 
references 24 and 28. 

3 T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959)' 
S. Berman, ibid. 112, 267 (1958); T. Kinoshita, Phys. Rev', 
Letters 2, 477 (1959); S. Berman, ibid. 1,468 (1958)'. 
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In m, although each partial probability has such 
terms. Thus, if we consider a hypothetical problem 
in which the electron mass is much smaller than its 
actual value, the radiative correction to a partial 
probability becomes very large and in fact diverges 
logarithmically in the limit m = o. This means, of 
course, that the perturbation theory breaks down in 
this limit. In spite of this, all these infinities cancel 
each other when they are added together and inte­
grated over the final states. Thus we encounter the 
interesting situation that the range of validity of 
perturbation theory for small m seems to depend 
on what ,ve want to measure. Although complete 
cancellation of In m terms was actually proved only 
in the Imvest order radiative corrections of decay 
processes, the way the cancellation takes place sug­
gests strongly that it would happen to all orders of 
perturbation theory. To see whether or not this 
conjecture is valid is one of the motivations of this 
work. 

If we look for similar cancellation of In m terms 
in other processes, such as collision of two particles, 
no such cancellation seems to be operating at first 
sight. Actually, cancellation of In m terms occurs 
in collision processes too, although it is not as 
complete as in the decay problems. This leads us 
to a new question: Which In m terms cancel and 
which do not in the calculation of the total collision 
cross section? In fact, the same problem of cancel­
lation will be found not only in the decay and 
collision probabilities but in arbitrary Feynman 
amplitudes. Thus we shall be concerned with the 
mass singularity of general Feynman amplitudes in 
most of this paper. 

Closely related to these problems is the fact that 
the unrenormalized electron propagator 8 t ( = Z 28 Fe) 
does not diverge for m -+ 0, 'whereas both Z2 and 
8FC have logarithmic divergences at m = o. This 
was first pointed out by Gell-Mann and Low and 
used as a basis of their work on the interaction at 
very small distances. 4 A study of mass singularity 
""ill help us obtain a better understanding of this 
and related problems. 

In analyzing the mass singularity of Feynman 
amplitude, ,ve have found it convenient to param­
etrize the amplitude according to a variant of 
Feynman's method in which two sets of parameters 
are introduced in succession instead of one set as 
is usually done. This parametrization is discussed 
in Sec. 2 and Appendix B. A general definition of 
mass singularity as a pathological solution of Landau 

• M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954). 

condition is given in Sec. 3. In Sec. 4, mass singu­
larities of simplest Feynman amplitudes consisting 
of one closed loop are analyzed in detail. More 
complicated amplitudes are treated in Sees. 5 through 
8. It will be shown in Sec. 9 how to treat amplitudes 
containing self-energy insertions. Results of our 
analysis are summarized in Sec. 10. Its application 
to the mass singularity of total transition probability 
is discussed in Sec. 11. The results of these con­
siderations apply only to unrenormalized amplitudes. 
Some of the problems which may arise in connection 
with charge renormalization are discussed in Sec. 12. 
Appendix A contains a qualitative argument which 
may clarify the mechanism of cancellation of mass 
divergences. 

2. DOUBLE PARAMETRIC REPRESENTATION OF 
FEYNMAN AMPLITUDES 

We want to consider an arbitrary Feynman 
diagram containing n internal lines. Unless it is 
necessary, we shall make no particular restriction 
on the kind of internal lines, external lines, and 
vertices. In particular, masses of different lines will, 
in general, be treated as independent of each other. 

To each internal boson line i corresponds a 
propagator 

Di = [(k i + qi)2 - m~ + ier1
, (2.1) 

where ki' qi' and m i represent variable and fixed 
momenta and (renormalized) mass. We can always 
choose k i and qi in such a way that conservation of 
four-momentum holds at each vertex for k and q 
separately. We shall assume this in the following. 
The propagator for an internal fermion line is 
obtained by applying the operatorS 

1 foo d 2 " iJ + 
2- ma -. mi 

mi' iJqi 
(2.2) 

to (2.1). If a diagram is separated into two (dis­
connected) parts by cutting an internal line and 
replacing it by two external lines, any such line will 
be called fixed. Propagators for fixed lines do not 
contain any variable momenta. We put ki = 0 in 
such a case. 

The transition amplitude may be written as 

(2.3) 

where r is the number of independent variables k i • 

F represents the contribution from vertices as well 
as from fermion operators (2.2), and is assumed to 

6 R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950). 
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be a regular function of coupling constants and 
momenta. If the diagram contains fixed lines, (2.3) 
is reduced to a product of subintegrals which have 
no common integration variable. Thus its behavior 
is determined by that of the subintegrals. 

Our problem may be studied starting from the 
integral (2.:3) itself, or by parametrizing (2.3) ac­
cording to Feynman's method and carrying out the 
k integration first. We shall take the second approach 
here. However, we have found it convenient to 
employ a variant of Feynman's method, in which 
two sets of parameters are introduced in successive 
steps instead of one set as is usually done. For this 
purpose, let us introduce the notion of a chain. A 
chain a is defined as the largest set of internal lines 
having the same momentum variable k,p Thus, two 
internal lines belong to the same chain if the diagram 
is separated into two pieces when these lines are 
cut. Of course this does not apply when a chain 
consists of just one line. Any unfixed internal line 
belongs to one and only one chain. Fixed lines do 
not belong to any chain. 

A vertex (part) is called internal if it is connected 
to the rest of the diagram by chains only. It will 
be called external otherwise. A new diagram is 
obtained from a Feynman diagram by omitting all 
external lines and corresponding vertices. This will 
be called a chain diagram. To any chain diagram 
there corresponds a class of all Feynman diagrams 
that can be constructed by inserting an arbitrary 
number of external lines in various parts of the 
chain diagram in accordance with the rules of a 
given theory. 

Each chain a contributes a factor 

1 
II (k )2 2 + . , 

i " ± qi - m i U 
i E a, (2.4) 

to the integrand of (2.3), where the use of ± depends 
on the relative sign of k" and k i • Our first step is to 
parametrize (2.4) [and not the entire denominators 
of (2.3)], making use of the Feynman formula 

__ 1_ = (n - 1)! 
ala, ... an 

x J 0(1 - Xl - ... - Xn) dXl dX2 ... dXn 
(xlal + X2a2 + '" + xnanr 

Xl, X2, ... ,Xn ;::: 0. (2.5) 

As is easily seen, (2.4) can then be written as 

(n" - 1)! J dx(a) ,(2.6) 
[(k" + q ,,)2 - V,,(x) + iEf· 

where n" is the length (namely, the number of 

lines) of the chain a, and 

dx(a) o( 1 - ~ Xi) IT dx;, 

(2.7) 
" L XiX;(qi =F q;)" 

i<i 

= ~ t xixi[m; + m; - (qi =F q,lJ. 
',' 

Note that (2.6) has a structure similar to the ordinary 
propagator, qa and Va being the "momentum" and 
"mass" of the chain a. The integrand of (2.3) is a 
product of factors (2.6) arising from all chains. We 
may now perform the second parametrization by 
combining them into a single denominator using a 
formula similar to (2.5). The resulting expression 
can be integrated with respect to r variables k a , as 
has been done by many authors, 6 and (2.3) is con­
verted to the parametric form 

J F 0(1 - L z,,) II dz(a) 
const X U2(z)[V(x, z) _ iEf 27 , 

all z,,;::: 0, (2.8) 
where n = L n", 

dz(a) = Z:·-l dz" dx(a) , (2.9) 

and F is derived from F of (2.3) and is a polynomial 
in X and z. The function U(z) is defined by 

(2.10) 

where the summation is over all sets (ai, a2, ... , aT) 

such that k,," k"" ... , ka, are independent. The 
function Vex, z) is given by 

vex, z) = L z" V,,(x) + vex, z) (2.11) 
with 
vex, z) - U(Z)-l 

X L {z,,(z~ aa ) ... (zo aa ) U(z" = O)} 
".~."'.O z~ Zo 

(2.12) 

where the summation in (2.12) is over all sets 
{a, f3, '" , o} with the property that the chain 
diagram is separated into exactly two parts if all 
chains a, f3, '" , 0 are cut into two parts. 7 Signs 

6 R. Chisholm, Proc. Cambridge Phil. Soc. 48, 300 (1952); 
Y. Nambu, Nuovo cimento 6, 1064 (1957); N. Nakanishi, 
Pro gr. Theoret. Phys. (Kyoto) 17, 401 (1957). 

7 The function (a/azp) .. , (ajaz,)U(z" = 0) of the formula 
(2.12) is essentially a product of two U factors, corresponding 
to the two parts of the chain diagram separated by the 
C set la, fl, .. , , ~l. This was noted by Symanzik, reference 9. 
I would like to thank Dr. Robert B. Marr who called my 
attention to this point. 
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of qa, qp, ... , qa must be so chosen that (qa ± 
qfJ ± ... ± qa)2 is invariant under any trans­
formation of the form 

(2.13) 

where i(C) runs over all internal lines of an arbitrary 
closed loop C and qC is an arbitrary fixed four­
vector. Because of this property, {a, {3, ... , 5} and 
(qa ± qp ± ... ± qa)2 will be called a C set and 
a C invariant, respectively. The formula (2.12) is 
derived in Appendix B from one of the known 
formulas of Vex, z). 

Before going into consideration of singularities, 
we shall make a few general remarks about the 
above formulas: 

(a) As is obvious from (2.10), U(z) ~ 0 for any 
z ~ O. The equality holds only when all z belonging 
to a closed loop vanish. In general U(z) has a zero 
of mth order if all z belonging to m independent 
closed loops vanish simultaneously. We also note 
that Vex, z), although it contains U(Z)-l, may be 
regarded as continuous in the entire domain of 
integration of (2.8). 

(b) In general, the amplitude (2.3) contains ultra­
violet divergences. In most cases this may be handled 
by introducing a suitable cutoff such as Feynman's. 8 

In this method, [(k i + qi)2 - m~ + ifr1 is replaced 
by [(k i + qi)2 - L~ + ifr2 and the k integration 
is carried out first in (2.3). The resulting parametric 
integral is similar in structure to (2.8) except that 
m i is replaced by Li and the power of the de­
nominator n' - 2r is larger than n - 2r. Of course 
the actual amplitude is obtained by integrating it 
with respect to L~ from m~ to A~ (A~ » m:). The 
final expression is given by (2.8) with additional 
terms containing A:. When n - 2r is not positive, 
the denominator of (2.8) must be interpreted as a 
positive power term V 1n

-
2

'1 times a logarithmic 
function of Vas is determined by the L~ integration. 
With this much precaution, we may use (2.8) for 
our consideration of mass singularity whether or 
not it contains divergent contributions from high­
energy end. 

(c) If the line i of chain a is a fermion line, F 
of (2.8) contains the operator (2.2) as a factor. 
Carrying out the indicated operation, we find that 
F contains a factor 

'Y~Q~a + mi (2.14) 

with 

8 In some cases it is necessary to use other methods such as 
that of Pauli and Villars. See W. Pauli and F. Villars, Revs. 
Modern Phys. 21, 434 (1949). 

a 
Q 

b 

FIG. 1. Simple chain 
diagrams. 

Qia = qi - qa + U~z) L {(ZfJ a~J 
... (za a~)U(Za = O)}(qa ± q{J ± ... q,), (2.15) 

where the summation is over all C sets containing a. 

(For simplicity it is assumed that qa = La Xiqi.) 
If the line j of chain (3 is also a fermion line, F con­
sists of two terms, one being proportional to the 
product of 'Y ~Q~ 0 + m i and 'Y vQ; p + mj, the other 
to Vex, Z)(aQia/aqj). Since vex, z) in the second 
term cancels with one vex, z) in the denominator, 
its contribution to the integral (2.8) is actually less 
singular than the first term. Thus it may be dis­
regarded in most of our considerations. Obviously 
the momentum dependence of F arising from deriva­
tive-coupling vertices can be handled similarly. 

(d) The formula (2.12) gives the most concise 
expression of the parametrized amplitude. However, 
it is often useful to write it in a less compressed 
form. For this purpose we may introduce a subchain 
as an arbitrary subset of a chain. Thus a chain a 

may consist of subchains ar, a2, ... , a B • Each sub­
chain has its set of x variables and the corresponding 
Va.(x) of the form (2.7). A new U(z) is obtained 
by the substitution 

It is then easy to see that vex, z) and the integral 
are again given by (2.12) and (2.8). However, vex, z) 
now contains C invariants of the form (qai - qaY 
besides familiar ones where ai and aj are subchains 
of a. In particular, if all subchains consist of only 
one internal line, all x take the value 1 and the 
formula (2.8) is reduced to the usual expression 
parametrized by a single set of variables z. C sets 
are still characterized by the property that the 
Feynman diagram is separated into two parts if 
all subchains of a C set are cut in the middle. This 
property was first noted by Symanzik. 9 

It will be appropriate here to illustrate the 
general formula (2.8) by applying it to some simple 
cases. First consider the chain diagram of Fig. l(a). 
We find from (2.10) that 

9 K. Symanzik, Progr. Theoret. Phys. (Kyoto) 20, 690 
(1958). 
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(2.16) 

Since this diagram cannot be divided into two parts 
unless all chains a, {3, 'Yare bisected, we obtain 
only one C set. Thus 

Vex, z) = Z" Va + ZpVp + Z~ V~ 
(2.17) 

A somewhat more complicated case is shown in 
Fig. l(b). In this case, U(z) is given by 

(2.18) 

The function vex, z) consists of seven C invariants, 
each corresponding one to one to the way the 
diagram of Fig. 1 (b) is cut into two parts. Its 
coefficients can be calculated easily from (2.12). 
We find that 

- U(z)v(x, z) = zpz~z)..cz" + z~ + z,)(qp - q~ + q)Y 

+ z"z~z"(zp + Zx + z,)(qa _ q~ _ q~)2 

+ ZaZ{3Z,(Z~ + Zx + z~)(q" - qp + q,)2 

+ zxz~z,(z" + Zp + z~)(qx + q~ + q,? 

+ zazpZXZ~(qa - q{3 - qx - q~)2 

+ Z"Z1ZXZ,(qa - q1 + qx + q,)2 

+ ZpZ1Z"Z,(q{3 _ q~ _ q~ _ q,)2. (2.19) 

3. DEFINITION OF MASS SINGULARITY 

We shall now come to the question of how to 
define the mass singularity of an arbitrary Feynman 
amplitude. As is well known, when the internal 
masses are fixed, the integral (2.8) can be regarded 
as an analytic function of scalar products of external 
momenta with various threshold singularities. In 
our problem, however, we would rather fix the 
external momenta and treat (2.8) as a function of 
masses. In spite of this difference, singularities in 
mass variables can be determined by the same 
condition as that for the threshold singularities. 
We shall therefore start from the consideration of 
threshold singularities in general. 

As is well known, a threshold is characterized by 
the condition that lO 

10 L. D. Landau, Nuclear Phys. 13, 181 (1959); N. 
Nakanishi, Progr. Theoret. Phys. (Kyoto) 22, 128 (1959); 
J. D. Bjorken, "Spectral representation of Green's functions 
in perturbation theory," Stanford University preprint (1959). 

Vex, z) = ° (3.1) 

is a minimum of vex, z) with respect to x and z. 
Note that Vex, z) is continuous in x, z :?: 0, including 
the boundary. At the minimum some Zp will take 
the boundary value Zp = 0. The set of all {3 with 
non vanishing Zp will be called A. The set of {3 with 
Zp = ° will be denoted by A. As is seen from (2.11), 
the threshold does not depend on XiP if {3 EA. For 
each a E A, Xi a is further classified into sets G a 

and Ga , depending on whether X.a ~ ° or = ° 
at the threshold. Nonvanishing x and z are now 
determined by minimizing the expression 

with respect to Xia and Za, where A and Aa are 
Lagrange multipliers. This leads us to the Landau 
conditionslO 

aVlaxia - Aa = 0, ill' EGa, (3.3) 
av laza - A = 0, a E A. 

It is easy to see that A = ° and LA Aa 0. This 
follows from the homogeneity of Vex, z) in z and 
in all x [where the second form of (2.7) is assumed 
for Va(x)]. 

In general, two kinds of situations, normal and 
pathological, may arise with respect to solutions 
of (3.3). In the first case, (3.3) yields normalized 
solutions Xia, Z" which are implicit functions of the 
masses and external momenta. These solutions exist 
when these variables satisfy certain restrictions. The 
simplest, and most common, situation is the restric­
tion of the square of the total energy in some channel 
to a particular value, which therefore marks the 
energy at which the integral begins to have an 
absorptive part. When this value corresponds to 
the mass of some intermediate state, it is called a 
normal threshold. All other cases are referred to as 
anomalous threshold singularities, and have been 
the subject of some rather extensive study in the 
last few years.l1 HO'wever, none of these singularities 
is what we are looking for, since they are for the 
most part branch point singularities, and do not 
lead to divergence of the transition amplitude. 

The other kind of situation arises when the masses 
and external momenta take on values such that 
Eq. (3.3) possesses arbitrary solutions Xi" and z" 
subject only to the normalization conditions. Ex­
amples are the infrared and In m divergences dis­
cussed in Sec. 1. Singularities of this type usually 
involve the vanishing of certain masses, and may 

11 R. Karplus, C. M. Sommerfield, and E. H. Wichmann, 
Phys. Rev. 111, 1187 (1958). 
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or may not exist for arbitrary external momenta. 
In what follows, we shall be most interested in 
those cases in which the external momenta are 
essentially arbitrary, the singularity arising solely 
as a consequence of the mass values assumed. 12 

Such cases will be called mass singularities. 
It is easily seen that (3.3) gives arbitrary z if 

and only if 

V,,(x) = 0, aV"(x)/ax,,, = 0, X}" = 0, (3.4a) 

iaEG", jaEG", aEA, 
and 

0, 

closed loop are determined by the condition (3.4). 
Although the heavy machinery developed in the 
last two sections is actually unnecessary for this 
case, we shall apply it to such a diagram since it 
will serve as a prototype for the analysis of the more 
complicated diagrams. 

Since our diagram consists of one chain, (2.8) is 
reduced to the simple form 

J F dX I ••• dXn 0(1 - XI -

[Vex) - ie]" 2 

If we introduce the v matrix by 

V'i = 1/2[m: + m~ - (gi - gi)2], 

(4.1) 

(4.2) (g" ± g{J ± .. , ± g,)2 

gi,(g" ± g{J ± .. , ± g,) (3.4b) we may express Vex) as 

~ = a, (3, ... ,0, ~ E A, 

where (3.4b) is needed only when {a, {3, '" , o} 
is a C set. Thus, in order to find a mass singularity, 
we have only to look for the case where the solution 
X of (3.4a, b) is arbitrary. Note that (3.4a) holds 
for each chain separately. The role of (3.4b) is 
then to restrict possible solutions of (3.4a) when A 
contains C sets. 

This consideration shows that finding the location 
of the mass singularity itself is much easier than 
finding the general thresholds for external momenta. 
What is not so simple, and this is our real problem, 
is to determine how strongly the integral (2.8) 
diverges at the mass singularity. This is complicated 
not only by the complex structure of the set A 
but also by the fact that the set .II, which does not 
participate in the determination of the location of 
the mass singularities, may influence the actual 
strength of the mass singularity. 

4. FEYNMAN DIAGRAMS WITH ONE CLOSED LOOP 

We shall first examine how mass singularities of 
simple Feynman diagrams consisting of only one 

where n = n" + n{J + n~ and dz(a), etc., are given 
by (2.9). We shall choose a so that V,,(x) vanishes 

12 By arbitrary we mean the arbitrariness of relative 
orientation of external momenta. The magnitude of each 
external momentum may (or may not) be fixed by the mass 
shell condition. For some particular orientation of external 
momenta, we may find pathological singularities which 
are not pure mass singularities. Usually they are not very 
interesting since their contribution to the total transition 
probability is negligible because of the phase space factor. 
An exception is the forward scattering amplitude. How to 
treat this case is discussed in Sees. 4 and 11. 

Vex) = L Vi,XiX" (4.3) 

as is seen from (2.7). For simplicity, all g arc chosen 
in the same direction along the loop. The threshold 
condition (3.4) becomes 

av/ax. = 0, Xi = 0; i E G, 

The integral (4.1) will exhibit a 
only when (4.4) gives arbitrary 
solutions. This takes place only if 

j E G. (4.4) 

mass singularity 
values of x. as 

Vi} = ° for i, j E G. (4.5) 

For i = j, (4.5) means that mi = 0. Thus our 
definition of mass singularity in fact gives a singu­
larity at zero mass. Since any subset of G also satisfies 
(4.4), some mass singularities may arise from over­
lapping domains of integration. There is a further 
complication that some Vii besides those of (4.5) 
may vanish independently of the threshold condition. 

To analyze these problems, it is convenient to 
regard the closed loop as a sum of three subchains 
a, (3, and 'Y, some of which may be empty. According 
to (d) of Sec. 2, (4.1) may then be expressed in the 
alternative form 

for arbitrary values of x E a. This means that a 
is a subset of G. We are interested in the behavior 
of (4.6) in the limit Z{J = Z~ = 0. In this neighbor­
hood, the denominator may be written as 

Z"Va+Z{JVp+z~V;+z~(g,,_q{J)2+ (4.7) 

where 

v~ = V, - (g, - g,,)2 

L xi[m~ - (qi q,,)2], ~ = {3, 'Y. (4.8) 
iE~ 



                                                                                                                                    

656 TOICHIRO KINOSHITA 

Noting that (4.8) is linear in x; E ~, we shall choose possibly at points of measure zero. Because of the 
{J as the largest set of i such that m~ - (q; - q,Y = 0 0 function, (4.6) can easily be integrated with respect 
for arbitrary values of x E a. Then, as a function to z". Next, integrating by parts around Zoy = 0, 
of x E a and x E 1', V; does not vanish except we obtain 

J 
F"Z~~+f~-1 dz~ dx(a) dx(fJ) dx(-y) 

[V;r7+f7 [(1 - z~)V" + z~V~ + z~(qa - q~)2 - i€r·+np-f7-2 
(4.9) 

+ less singular terms, 

where we have assumed that F roo..; F'Z~7 for small 
Zoy and F' rv F"z~~ for small z~. If the set (3 is empty, 
the integral (4.9) will diverge whenever n" - toy;::: 2. 
This is obvious since V,,(x) vanishes for arbitrary 
values of x E a. 

Let us assume next that {3 is not empty. At the 
mass singularity, V~ vanishes for arbitrary values 
of x E a + {3. On the other hand, it is certainly pos­
sible to choose a large enough a that (q" - q~)2 ~ 0 
holds for almost all values of x E a + {3. In fact, 
if (q" - q~)2 vanishes there, a + {3 is a subset of G 
by definition. We can, therefore, without loss of 
generality, regard it as a new a and repeat the 
above consideration. Assuming that (q" - qp)2 ~ 0, 
we may now integrate (4.9) at z~ = 0 and obtain 

J dx(a) J F" dx(fJ) dx('Y) 
[V,,(x) - ieJd [V;r7+f7[(q" _ q~)2](n~+fP)/2 

(4.10) 

+ less singular terms, 

where d = n" - toy - 2 + (n~ - t~)/2. Since 
V,,(x) vanishes everywhere, (4.10) will certainly 
diverge unless d < O. On the other hand, d < 0 
is not sufficient .for convergence, since V; and 
(q" - q~)2 may vanish for some values of x E a. 
To check this point, we have only to examine whether 
V; vanishes for arbitrary values of x of a subset 
a' of a. No new divergence arises if such a' is not 
found. If a' is not empty, we repeat the above 
consideration for a' and see whether new d is less 
than zero or not. Since Vex) is quadratic in x, all pos­
sible divergences will be detected by this procedure. 

Going back from the sub chain to the chain 
picture, we can easily translate the conditions 
V" = 0, Vp = 0 to a property of the v matrix, 
namely, 

V;; = 0, Vik = 0 for i, j E a, k E {J, a C G. (4.11) 

A necessary and sufficient condition for the con­
vergence of the integral (4.1) at G is given by 

d = n" - toy - 2 + max [0, (n~ - t~)/2J < 0, (4.12) 

where a, {3 are all possible sets of internal lines 
satisfying (4.11) and max (a, b) means the largest 
of its arguments. 12a 

We shall show next that possible values of n" 
and n~ are strongly restricted by the requirement 
that mass singularities should take place for an 
arbitrary choice of external momenta. We mean 
by this that the relative orientation of the external 
momenta is arbitrary although their magnitudes 
may (or may not) be fixed by the mass shell con­
dition. Hence Vi; = 0 may be satisfied for an arbi­
trary orientation of the external momenta if and 
only if it depends on at most one external mo­
mentum. This takes place only when i and j are 
direct neighbors, since q, - q; is equal to the sum 
of the external momenta that enter the loop at the 
vertices between the lines i and j. Noting that each 
line has at most two neighbors, we see that not 
more than two of the off-diagonal elements in any 
row or column of the v matrix may vanish simul­
taneously. We therefore find that the only possible 
values of n" and n~ are n" = 1, n~ = 0, 1, 2; and 
n" = 2, n~ = O. In the following, mass singularities 
for n" = 1 and 2 will be called A and m singularities, 
respectively. It should be emphasized that this 
restriction on n" and n~ is valid only for general 
external momenta. If the external momenta are 
subject to some restrictions, some Vi; may vanish 
even if i and j are not direct neighbors. An important 
example of this sort is the forward scattering am­
plitude, which will be considered at the end of this 
section. 

Equation (4.12) shows that the degree of diver­
gence d depends on n" and np but not on n = 

n" + n~ + noy as a whole. Since n" + n~ does not 
exceed 3 in general, this means that all types of 
mass singularities for n > 3 are already included 
in the case n = 3. However, the behavior of the 
latter is not difficult to analyze since the x inte­
grations can be carried out explicitly in this casel3

• 

12a An estimate of divergence similar to (4.12) is made in 
reference 28 for the case of infrared divergence. 

13 Complete integration of an integral, which has the 
same structure as (4.1) except that the power of denominator 
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In the following, we shall therefore discuss some 
features of A and m singularities for arbitrary n, 
making use of information obtained from the study 
of a diagram with n = 3. 

(a) A singularity. As is seen from (4.12), the 
integral (4.1) is finite at a A singularity when np = 0 
or 1. It may diverge only if np = 2. This means 
that the conditions 

mi = 0, m: = (qi - q;)2, m! = (qi - qk)2 (4.13) 

are satisfied for successive lines i, j, and k. In other 
words, the A singularity at mi = 0 (or Xi = 1) 
may become divergent only when it is enhanced 
by the last two conditions of (4.13). Even then, it 
does not diverge if fp + f~ ;r; O. This happens in 
particular when j is a fermion line. In this case F 
contains a factor 

(4.14) 

as is seen from (2.14). It vanishes at Xi 1 (and 
mi = 0) and hence f p + f ~ = 1. This explains why 
vanishing of the neutrino mass does not lead to 
an infrared-like divergence. In general, f p + f 7 

will be zero if j is a boson line. The integral (4.1) 
is then divergent at mi = 0 and behaves as 
In mi when this limit is approached in the order 
[(qi - qi)2 -> m:, (qi - qk)2 -> m!l. and finally 
mi -> 0. 14 This A divergence takes place only in 
association with vanishing boson mass. This and 
the necessity for strong enhancement is the charac­
teristic feature of A divergence. When n ::; 2, not 
all conditions of (4.13) can be satisfied. The integral 
(4.1) has therefore no A divergence in these cases. 

(b) m singularity. In this case the neighboring 
lines i and j satisfy 

(4.15) 

This means that all three lines meeting at a three­
vertex must have zero mass. There is no suppression 
(f p + f ~ = 0) in this case, since F cannot vanish 
identically at the (one-dimensional) singularity 
Xi + Xi = 1. Let us first assume that neither Vik 
or ViZ vanishes, where k and l are direct neighbors 
of i and j, respectively. Then we find an m diver­
gence of the form In m i at (4.15), if the limit is 
taken in the order (qi - q;)2 -> m:, mi -> 0, and 
finally m i -> 0. 14 No m divergence occurs if n = l. 

is raised by one, has been carried out by G. Kallen and A. S. 
Wightman, Kgl. Danske Videnskab. 8elskab, Mat.-fys. 
Skrifter 1, No.6 (1958), for the case n = 3. For our purpose, 
however, their result must be integrated further with respect 
to some mass. 

14 The value of the integral (4.1) depends on how the 
limit is approached in the space of n mass variables. 

(c) Overlapping of mass singularities. If Vii = 0 
in addition to (4.15), masses and momenta of suc­
cessive lines i, j, l satisfy (4.13) also. Thus, the inte­
gral (4.1) diverges at both Xi = 1 and Xi + Xi = l. 
When j is a boson line, (4.1) shows simultaneous m 
and A divergences of the form (In mi) (In mi + c In mi) 
if the limit is taken in the order [(qi - q,)2 -> m:, 
(qi - qZ)2 -> m~l. mi -> 0, and then mi -> 0, where 
c is a numerical constant. 15 If Vik = 0 holds in 
addition and if i is a boson line, (4.1) will also diverge 
as (In mi)(ln mi + c' In mi) in an appropriate limit. 
Since singularities at Xi = 1 and Xi = 1 cannot 
occur simultaneously, these two divergences will 
appear as separate additive terms of (4.1). For the 
same reason, (4.1) does not contain a term of the 
form (In mi)(In mz). When some of the lines i, j 
are fermion lines, the corresponding A divergences 
will disappear from the above expressions. 

In general, if we consider all mass singularities 
of (4.1), the condition (4.11) will be satisfied by 
various overlapping and nonoverlapping sets a. 

If we consider all a with na = 1 (or na = 2), the 
integration domain of (4.1) may be divided into 
subdomains so that each subdomain contributes at 
most one A singularity (or m singularity) to the 
integral. When they are considered together, some 
a with na = 1 may be contained in other a with 
na = 2 and thus A and m divergences will appear 
as a product. Conscquently, (4.1) can always be 
written as a sum of terms, each of which is a product 
of at most two logarithmic factors. 

Strictly speaking, the strength of mass singularity 
determined above is that of the dispersive part of 
the integral (4.1). Mass singularity of the absorptive 
part, which is obtained by replacing the denominator 
V-n+ 2 by o(n-3)(V), will in general be weaker than 
that of the dispersive part because of the stronger 
restriction on the domain of integration. 

We have mentioned previously that more than 
two off-diagonal elements of the v matrix may vanish 
simultaneously if the external momenta are not 
completely arbitrary. In such a case, we may expect 
to find a stronger divergence than those considered 
above. Of these, an important case from the practical 
point of view is the amplitude for forward scattering, 
which is related to the total cross section by uni­
tarity. Although it is not a pure mass singularity/2 
it may be related to the latter as is shown in the 
following. For this purpose, let us examine the 
property of the fourth-order diagram of Fig. 2(a), 
which describes the forward scattering of particles 

16 The value of c depends on the limiting procedure. 
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a b 

p' 

FIG. 2. The fourth-order 
Feynman diagram (a) 
describes the forward 
scattering of particles with 
momenta p and p'. Dia­
gram (b) is obtained from 
(a) by contracting the 
line 4. 

of momenta p and p'. Noting that q3 and q4 are 
equal, we find that V3 4 = (m; + m!)/2. This has 
an anomalous feature in that it vanishes auto­
matically when Vn and V44 vanish. Because of this, 
in addition to the mass singularities considered 
already, we find new singularities characterized by 

(i) m3= m4 = 0, 

(ii) m3= m4 = 0, mi = p2 or m~ (p')2, and 

(iii) m3= ° 2 2 2 (P')2 m4 = ,ml = p , m2 = . 

We may also consider the cases where ml and/or m2 

go to zero. 
The behavior of these singularities may be seen 

clearly in the following manner: Since we are con­
cerned with the limit m3 = m4 = 0, let us assume 
for simplicity that m3 = m4 even before the limit 
is taken. We shall also assume that 3 and 4 are 
boson lines. It is then easy to see that (4.1) IS 

reduced to 

-~2 J F dXI dX2 dX3 8(1 - XI - X2 - x3) (4 16) 
am 1,2,3 ' . 

3 " • £..J VijXiXj - 7~ 
i,i 

where the integral over XI, X2, X3 is the amplitude 
for the process shown in Fig. 2(b). Thus, all singu­
larities of Fig. 2(a) (with m3 = m4) may be obtained 
by differentiation from those of Fig. 2(b). But the 
latter can be determined from our general con­
sideration, since Fig. 2(b) has no identical propaga­
tors. For instance, if Fig. 2(b) has a mass singularity 
of the form In m3 , that of Fig. 2(a) is proportional 
to l/m~. This takes place in the case (iii). A physical 
example is the total cross section for Rutherford 
scattering. Because of the relation (4.16), we may 
include such "Coulomb" type singularities in our 
consideration of mass singularity. When the lines 
3 and 4 are fermion lines, this argument must be 
slightly modified, since F vanishes at the singularity. 

5. REDUCTION OF FEYNMAN AMPLITUDES 

We shall now extend the consideration of the 
last section to general Feynman diagrams which 
contain several closed loops. According to Sec. 3, 

chains of a given diagram are classified into the 
sets A and A at a mass singularity. For the sake of 
convenience, we shall treat A as an assembly of 
subchains. Accordingly, U(z) and Vex, z) are general­
ized following the remark (d) of Sec. 2. A diagram 
obtained by contracting some (sub-) chains of the 
original diagram will be called a reduced diagram. 
In particular we obtain a reduced diagram A if 
all subchains of A are contracted. We shall show 
that the mass singularity of the integral (2.8) is 
the same as that of an appropriately reduced diagram 
B which contains A as a part. 

Let us define UA(z) and VA(x, z) by applying 
(2.10) and (2.12) to the reduced diagram A. We 
shall also introduce O(z) by 

U(z) = UA(z)O(z) 

+ higher-order terms of z in A. (5.1) 

Let r A be the number of independent closed loops 
of the reduced diagram A. As is easily seen, O(z) = 1 
if r A = r. The mass singularity occurs at the origin 
of Zl!, where (3 goes over all elements of A. In this 
neighborhood, Vex, z) may be written as 

V(X, z) = VA(x, z) + LA Zl! V& + Q + "', (5.2) 

where Q represents the sum of all terms quadratic 
in z E A and 

V& = E' U::;I(Z)(Za a:J ... (Za' az~,)UA(Z) 
X [VI! - (ql! ± qa ± ... ± qa,)2]. (5.3) 

The summation L' is over all elements a, ... , a' 

of A such that ((3, a, ... , a'l is a C set of the 
original diagram. In deriving (5.3), we have used 
the formula (Bl1) (See Appendix B). Actually (5.2) 
contains another term linear in Z EA. It was not 
written explicitly since it vanishes at the mass 
singUlarity and does not play any role in the follow­
ing consideration. 

As is seen from (5.2), the property of the Feynman 
amplitude (2.8) depends not only on VA(x, z), 
which vanishes at the mass singularity, but also 
on the behavior of V~. To examine this dependence, 
let us note that V& vanishes for arbitrary values of 
Za , .•. , Za' E A if and only if 

VI! - (qfJ ± qa ± ... ± qa·)2 = ° (5.4) 

holds for all values of X E a, ... , a ' and for all 
possible C-sets (.8, a, '" ,a'}. In general, (5.4) may 
not hold for a full chain (3. However, noting that 
(5.4) can be written as 
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L xi[m; - (qi ± qa ± ... ± qa,)2] = 0, (5.5) 
iE~ 

which is linear in Xi E {J, it is always possible to 
choose a largest subchain of {J which satisfies (5.4). 
We shall define B as the sum of all chains of A and 
all subchains of A satisfying (5.4). Then the set E 
consists of all subchains (J of A such that V~ does 
not vanish identically for arbitrary values of X, 

z E A. 
If we define U B(Z) and V B(X, z) for the reduced 

diagram B according to the general rule, ,ve find 
that 

U(z) = U B(Z) U(z) + 
Vex, z) = VB(x, z) + La z~ V~ + ... , (5.6) 

where U(z) is the same as before, because it does not 
contain any z~ E A such that 1{J, a, ... , a'l is a 
C set of the original diagram and a, '" , a' EA. 
If we introduce non-negative variables p and z' by 

Za = (1 - p)z~, L z~ = 1, a E B, 
(5.7) 

z~ = pz~, L z~ = 1, (J E E, 

the mass singularity will be found at p = O. In this 
neighborhood, the integral (2.8) may be expressed 
in the form 

f F dz'[BJ dz'[B]p(na-2r+ 2r
s-1) dpo--_~. 

U;(z') U2(z')[(1- p) V B(X, z') + p La z; V;-i€r 2r 

+ less singular terms, (5.8) 

where 

dz'[B] = 0(1 - LB z~) n B dZ'(a). (5.9) 

Taking into account that V~ ;.f 0 for (3 E E, we 
can now carry out the integration of (5.8) in the 
neighborhood of p = 0 and obtain the formula 

f GB dz[B] 

U~(Z)[VB(X, z) - i€rB- 2rB 

+ less singular terms, (5.10) 

where 

GB = f F dz[EJ 
U2(z) [La z~ Vprll-2r+2r B 

(5.11) 

For simplicity we have replaced z' by z. It should 
be noted that La ZB V; may vanish for some values 
of X, z E A. This may lead to a singularity of (2.8) 
stronger than that indicated by the denominator 
of (5.10). As was discussed in Sec. 4 for a similar 
situation, however, it corresponds to an enhance­
ment of mass singularity arising from a subset of A, 

FIG. 3. Reduced 
diagrams of the chain 
diagram (b) of Fig. 1. 

which can be treated as a separate problem. We 
may therefore regard G B as a finite function of 
variables of the reduced diagram B. In this sense 
all information about the mass singularity of the 
Feynman amplitude is contained in the denominator 
of the first term of (5.10). 

In general the diagram B may be decomposable 
in the sense that it consists of two components B' 
and B" which share only a vertex of the reduced 
diagram B. Of course B' and B" may be decomposed 
further into their components. If a component is 
no longer decomposable, it will be called irreducible 
with respect to this decomposition. Let us assume 
that B is decomposed into irreducible components 
B l , B 2 , '" • Similarly, A can be decomposed into 
its components Ai' We shall choose them so that Ai 
is a reduction of B i for each i. K ote that A i is not 
necessarily irreducible. Corresponding to this de­
composition, we find that 

U B(Z) = IT U B.(Z) , 
i (5.12) 

Making use of Feynman's formula (2.5) in a reverse 
fashion, it is now possible to show that the integral 
(5.10) can be factorized into a product of simpler 
integrals of the form 

f FBi 0(1 - LBi za) ITE' dz(a) . 
[UEi (Z)J2[V B,(X, z) - i€rBi-2rB' 

(5.13) 

Here FE j is the part of G B which is relevant to the 
evaluation of the mass singularity arising from the 
component B i • Thus, in order to determine the 
mass singularity of the Feynman amplitude (2.8), 
we have only to examine each irreducible com­
ponent. Furthermore, the integral (5.13) can be 
written down immediately by applying the general 
formula (2.8) to the irreducible component B i • 

This is a nice feature of the above reduction. 
As an illustration, we shall show how the integral 

for the chain diagram of Fig. 1 (b) may be reduced 
in the following cases: 

(i) B = la, (3, 'Y), E = {X, p., pl. The reduced 
diagram B is shown in Fig. 3(a). It consists of three 
irreducible components {a}, {(3}, and hI. For 
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Z~, z., Z, ~ 0, U(z) and Vex, z) approach Z"Z~Z'Y 
and z"V" + z~V~ + z'YV'Y' respectively, and the 
integral (2.8) is approximated by 

J o(! - z" - Z~ - z'Y) dz(a) dz(~) n~z~~:+n> 6 , 

(ZaZ~Z» [z" Va + Z~ V~ + Z'Y V l' - ~f] 
(5.14) 

corresponding to (5.10). (Put F = 1 for simplicity.) 
We can now perform the Z integration completely 
and obtain 

x J dx(y) 
[V-y(x) - ifr'-2 ' 

(5.15) 

which is a product of integrals for single closed loops. 
(ii) B = {a, {3, A, v}, 11 = f'y, ILl. The reduced 

diagram B is shown in Fig. 3 (b). We find two ir­
reducible components {AI and la, (3, vI. Thus, in 
the neighborhood of Z'Y = Zp = 0, the integral 
(2.8) is reduced to a product of 

(5.16) 

and 

J 0(1 - Za - Z~ - z.) dz(a) dz(f3) dz(v) 

U~(z)[z" Va + Z~V~ + z,V. - (ZaZ~./UB)(qa - q~ + q,)2 - ifr.+
np

+n
.-

4
' 

(5.17) 

where 

6. CRITERION FOR THE DIVERGENCE OF 
MASS SINGULARITIES 

We have found that an arbitrary Feynman ampli­
tude can be reduced to a product of irreducible 
components in the neighborhood of a mass singu­
larity. Thus, in order to determine the properties 
of a mass singularity of the whole amplitude, we 
have only to examine each irreducible component 
(5.13) separately. For this purpose it is convenient 
to regard each chain ~ of the set A j as a sum of 
three subchains ~G' ~H' and ~K' where ~H and/or 
~K may be empty, and define G, H, and K as assem­
blies of all ~G' ~H' and h, respectively. (We shall 
drop the suffix i in the following.) A new UA(z) 
is obtained from the old one by the substitution 
z, ~ Z,G + Z,H + Z,K for all ~ E A. Let us identify 
~G with G, of (3.4). We are thus interested in the 

where U EO, Ro, and Qg are the values of U B, R, and 
QO at Z~ = 0, {3 E K. It is assumed that FE behaves 
as Fi (LK z'Y)fK for small LK Z'Y' 

If non-negative variables X, IL, and new Z are 
introduced by 

behavior of the integral (5.13) in the limit where 
all z's of the sets H, K, and D = B - A go to zero. 
In this neighborhood, V B(X, z) may be written as 

VB(x, z) = VA(x, z) + LD Z. n + QO + ... , (6.1) 

where 

VG(X,Z) + LHz~17~ 
+ LKZ-y17-y +R + (6.2) 

and 17~, 171' are defined by formulas similar to (5.3). 
QO is the value of Q [defined by (5.2)] at Z~ = 0, 
{3 E 11, and R represents the sum of all terms quad­
ra tic in Z E H + K . We shall choose H as the largest 
set for which LH Z~ 17~ vanishes for all values of 
x, Z E G + H. Thus, we may regard 171' as non­
vanishing insofar as the singularity at G is concerned, 
although it may vanish for some values of x, Z E G. 

Making use of the method of Sec. 5, we can now 
carry out the integration of (5.13) with respect to 
the variable LK Z'Y' The most singular term of the 
resulting expression is given by 

(6.3) 

Za ~ (1 - A - }.()za, LG Za = 1, 
Z~ ~ Xz~, LH Z~ = 1, (6.4) 

Z'Y ~ ILZ'Y' LD z'Y = 1, 
(6.3) can be written in the neighborhood of X = IL = ° 
as a sum of terms of the form 
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where dz[G], etc., are defined by (5.9), U a(z) is 
obtained from U BO(Z) by putting Z~ = 0 for all 
/3 E H + D, and X2Rl and /Ql are essentially equal 
to Ro and Qg. We have also assumed that F' can be 
written as L F1mX1/l

m for small A and /l. The values 
of land m such that l + m is a minimum will be 
denoted as f Hand f D in the following. 

We shall now examine under what condition the 
integral (6.5) is finite at the mass singularity. Let 
us first consider the simplest case where both H 
and D are empty. In this case all terms of the 
denominator except for the first one are absent in 
(6.5). Furthermore, nB - nK = na and fH = fD = O. 
Since Va(x, z) vanishes for all values of x, z E G, 
we find that (6.5) diverges unless 

The integral (6.5) therefore diverges unless 

na - fK - 2rB + (nD - fD)/2 < O. (6.6b) 

In the same fashion, when D is empty but H contains 
some elements, we obtain the inequality 

(6.6c) 

Finally, when both Hand D are not empty, we find 
the additional condition 

na - /K - 2rB + (nD + nH - fD - fH)/2 < O. (6.6d) 

These inequalities may be combined into a single 
formula as follows: 

d = na - fK - 2ra 

+ max [0, !enD - fD), !enH - fH), 

X !enD + nH - fD - fH)] < 0, (6.8) 

where max [a, b, c, d] means the largest number of 
its arguments. We have used the fact that rB = ra. 

Of course, even if (6.8) is satisfied, the integral 
(5.13) may still diverge at singularities which arise 
from some subset G' of G. To find whether or not 
this is the case, we have only to repeat our analysis 
for all possible G'. It is important to note here that, 
although G is irreducible, G' may sometimes be 
regarded as reducible. In such a case, we have to 
apply the above consideration to each irreducible 
subset of G'. 

7. IRREDUCIBLE COMPONENTS CONSISTING 
OF ONE C SET 

We are now ready to examine how an irreducible 
component behaves in the vicinity of its mass 
singularity. Since we have discussed the case of 

y 

'@)' 
v' 

FIG. 4. A diagram representing an irreducible 
component which consists of one C set. 

(6.6a) 

is satisfied. Next consider the case where H is 
empty but D is not. Then, as is seen from the 
definition of D, Q, is non vanishing for the values 
of x, z E G for which LD X~ V ~ = 0 holds. Carrying 
out the /l integration at /l = 0, we can reduce (6.5) 
to the form 

(6.7) 

one closed loop already, here we shall consider 
irreducible components with more than one closed 
loop. For simplicity, we shall assume in this and 
the next sections that all propagators in the diagram 
are different. The case where some lines are identical 
is treated in Sec. 9. 

From our point of view, the simplest irreducible 
component B is the one which consists of just one 
C set {a, /3, ... , 0 I. The corresponding diagram 
has a structure such that all chains end at the two 
vertices v and v', as is shown in Fig. 4. In this section 
we shall examine this particular case in detail. The 
general case will be considered in Sec. 8. As is easily 
seen, U B(Z) for this diagram can be written as 

UB(z) = ZaZ~ ... zo(Z:l + Z;l + ... + Zll). (7.1) 

Since each chain consists of subchains, we have to 
make the substitution z, ---7 Z,a + Z,H + Z,K in (7.1) 
for all ~ E A. The function V B(X, z) is given by 
(6.1) and (6.2) near the singularity, where Va(x, z), 
V; and V~ vanish at the mass singularity for all 
x and z. For general external momenta, this is 
possible only if each coefficient of these quantities 
does not depend on more than one external mo­
mentum. As is shown in the following, this puts a 
very strong restriction on the possible types of 
mass singularity. It is convenient to consider 
separately the cases where (I) all chains belong to 
A, and where (II) one of the chains does not belong 
to A. Cases where more than one chain does not 
belong to A will not be considered, since they reduce 
to the case of single closed loops, whose behavior 
has been examined already in Sec. 4. 
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In the case (I), the set D is empty and thus nn = O. 
According to the condition (3.4), 

V~O(x) = aV~o(X)/aXi = 0; i E ~o, ~ E A, 

and 

(7.2a) 

(qao + q~o + ... + qOO)2 = 0, (7.2b) 

q;(qaO+q~O+ ... +qoo) =0; iE~o, ~EA. 

They must hold for arbitrary values of x E G. 
The first equation tells us that each subchain ~o 
consists of at most two elements, as was shown in 
Sec. 4. The requirement that (7.2b) should not 
depend on the relative orientation of external 
momenta means that not more than one external 
vertex may exist between any pair of internal lines 
of the set G. [Equation (7.2b) gives no restriction 
on the number of internal vertices.] Thus, if we 
denote internal lines of each chain ~ (not subchain) 
by 1 ~, 2 ~, ... , successively, starting from the 
vertex v, we find that (7.2b) may hold only in the 
following cases: (a) Each subchain ~o consists of 
one element It (b) ~o = {I~} except that ar; = {2a} 
for a suitably chosen a E A, (c) ~r; = {I ~} except 
that ao = {la, 2a}. In other words, (7 .2b) localizes 
the set G to a neighborhood of the vertex v. Of course, 
this may hold just as well with respect to the vertex 
v'. However, we shall define hereafter the vertex v 
by the property that the canonical form (a), (b), 
or (c) holds with respect to v. The chains as well 
as the C set will then be called oriented. 

Without loss of generality, we shall choose 
ql{J = ... = qlo = O. Then the remaining q's are 
completely determined as linear combinations of 
external momenta, and are nonvanishing in general, 
except that ql a vanishes if the vertex v is internal. 16 

Equation (7.2b) is then reduced to the simple form 

i E ao (7.3) 

in all three cases mentioned above. 
According to (5.3), both 

V~H - (q~H - q~O)2 = 0 
and 

must hold in order that the enhancement of the 
mass singUlarity takes place. For our particular 
choice of q, these equations are equivalent to 

j E ~Il' ~ = a, (3, ... , O. (7.4) 

16 Here we use the words "internal" and "external" 
relative to the set I a, (3, ••• , a I. Thus they are different 
from those used elsewhere. 

The second equation shows that no enhancement 
is possible unless q", 0 = 0 or q i = O. We are now 
ready to discuss the degree of divergence of mass 
singularities. 

Case (a). This takes place when 

ml~ = 0 for all ~, and q!o = q~a = O. (7.5) 

We find that nr; = r + 1 for r ~ 2. If the vertex v 
is not internal and thus ql",( =qar;) is different from 
zero, we find that nIl = 0 according to (7.4). We 
then obtain d = 1 - r - fK from (n.8). Since no 
subset of G gives divergence in this case, our inte­
gral is finite for any r. 

When the vertex v is internal or ql a = 0, we find 
nIl ::::; r + 1, which leads to d ::::; max [1 - r - h, 
(3 - r - fIl - 2fK)/2]. Thus the irreducible com­
ponent may diverge only when r ::::; 3. If some of 
la, 1{3, ... , 10 are fermion lines, the mass singu­
larity is finite for any r since f H + f K ~ 2 holds as 
is seen from (2.14). Another case in which the 
strength of mass singularity may be suppressed is 
the interaction of charged scalar meson with photon. 
If a virtual photon Ia is emitted from the three­
vertex v, we find r = 2, ff{ + tK ~ 1, and thus d ::::; 0, 
taking into account thatF contains a factor QI~ -
QI'Y' where the Q's are defined by (2.15) and vanish 
at the mass singularity. We may therefore obtain a 
logarithmic mass di\'ergence in this case. If two 
photons are emitted at the four-vertex v, we obtain 
r = 3, tf{ + h = 0, since F does not vanish now. 
We may thus find a logarithmic divergence again. 

Case (b). This singularity occurs when 

q!o = q~", = O. (7.6) 

In general, we cannot choose q2a = qar; = 0 because 
it demands a specific relation between the external 
momentum attached to the vertex v and the one 
which appears between the lines Ia and 2a. An 
exception arises when they are the only external 
momenta. But we find d < ° in this case since 
there is no enhancement. In all other cases, v must 
be internal and thus ql a = ° and q2a r' O. This 
means that nIl ::::; 1 and hence d ::::; 1 - r - fK + 
max (0, (1 - ff{)/2) < 0. Thus the integral is again 
finite for any value of r( ~ 2). 

Case (c). This occurs only when the vertex v is 
internal and 

mla = m2a = 0, rnl/l = ... m lo = 0, 
(7.7) 

qla = 0, 2 = o. q2a 

We find that nr; r + 2 (r > 2) while nf{ = ° 
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because qaG ~ o. Thus we obtain d = 2 - r - fK 
for r 2:: 2. We might therefore conclude that the 
integral is finite for all r except r = 2. However, 
since an arbitrary subset G' of G containing {la, 2a) 
is always reducible to single closed loops, the inte­
gral actually contains a logarithmic m-divergence 
for any r. Since this singularity is not sensitive to 
the value of ml~' ... , ml! (even when r = 2), it 
may be regarded as an m-divergence arising from 
the chain a. 

We shall now consider the case (II). If one assumes 
that D = I a}, A = {f}, ... , O}, the threshold 
condition and enhancement condition are given by 

V,G(X) = aV,G(X)/aXi = 0; i E ~G' ~ E A, (7.8) 

and 
Va(X) - (qa + q~G + ... + q1G)2 = 0, 

V,Il(X) - (q,H - q,G)2 = 0; ~ E A, (7.9) 

respectively. These equations can be treated in a 
manner similar to (7.2) and (7.4). We find that a 
mass singularity occurs only in the following cases: 

Case (d). ~G = {1~) for all ~ E A, or 

m
" 

= 0, ~ E A, m: = q~ ~ 0, i E a, (7.10) 

where we have chosen ql~ = ... = qll = 0 as before. 
This shows that the sub chain a, being irreducible, 
consists of either one or t,vo elements. The second 
possibility is found only if both v and v' are external 
and ~ = ~G for all ~ E A. This leads us to na = r, 
nn = 2, nIl = 0, and d = max [-r - h, 1 -
r - fK - (fn/2)] < o. In all other cases, we obtain 
nD = 1, nf[ ::; r. This also gives d < o. Thus the 
integral is finite for any mass singularity of the 
type (7.10). 

Case (e). ~G = {1~) for all ~ E A except that 
f}G = {2f}), or 

(7.11) 

which may be satisfied only if the number of external 
vertices between the line 2f} and line i( E a) does 
not exceed one. Thus, the vertex where different 
chains meet must be internal. This may be satisfied 
at either or both of 11 and v'. In the first case, we 
obtain nD = 1, nH ::; r + 1, and hence d ::; -r -

fK + max [0, (1 - fn)/2, (1 + r - tH)/2, (2 + r -
fD - tH)/2]. The second case occurs only if a = 
{la, 2a), f} = {If}, 2f}, 3f}), and ~ = {1~) for the 
rest. This gives d = -r - h + max [0, (2 - fD)/2, 
(2 - fH)/2, (4 - tD - fH)/2]. Both cases give d = 0 
if r = 2 and h = fn = tH = o. We find d < 0 
otherwise. However, we may not conclude that the 

integral is finite for all r except r = 2. This is because 
an arbitrary subset G' of G containing {2f}) is re­
ducible to single closed loops, and the loop f} gives 
a A divergence independent of other loops (namely, 
for any r) if the mass singularity at m2~ = 0 is 
enhanced by the lines If} and 3f}. Note that this 
enhancement is also a necessary condition for the 
divergence of the irreducible component as a whole. 
More careful analysis may reveal that it is in fact 
an ordinary A divergence of the chain f}. 

In summary, the mass singularity of an irreducible 
component consisting of one C set is localized to the 
immediate neighborhood of the vertex v. If there 
is no enhancement, no new divergence is found at 
the mass singularity. (We may find an m divergence. 
But it arises from one of the chains rather than the 
C set as a whole.) Since the integral may diverge 
when some of the lines 1 ~ are fixed on the mass 
shell, this result shmvs that these divergences dis­
appear ,vhen such a restriction is removed. When 
there is strong enough enhancement, the integral 
may exhibit new kind of mass divergence besides 
that of the A type. Hmvever, it becomes finite if 
some of the lines la, If}, ... , 10 are fermion lines. 
In the case of photon-meson interaction, the strength 
of mass singularity may also be suppressed but it 
still may diverge logarithmically in some cases. 

8. GENERAL IRREDUCIBLE COMPONENTS 

Let us now consider a general irreducible com­
ponent which consists of several overlapping C sets. 
This integral can be expressed by the general formula 
(2.8), if one assumes that every chain of the diagram 
belongs to the set B. The mass singularity of the 
integral is determined by the requirement that all 
equations of (3.4) are satisfied simultaneously. To 
examine its properties, let us first assume that every 
chain of the diagram is connected and thus has just 
two ends. We also assume that B = A. 

Let us consider a C set I a, f}, ... , 0). Then one 
can cut all chains a, f}, ... , 0 in such a way that 
the subchains aG, f}a, ... , oa are found on the same 
half of the divided diagram. These chains will 
satisfy Eq. (3.4b) only if at most one external line 
is attached to this portion of the divided diagram. 
From this it follows that the C set {a, f}, •.. , 0) 
must be of the canonical form (a), (b), or (c) of 
Sec. 7, if the chains a, f}, .•. , 0 are oriented accord­
ing to the convention of the last section. When all 
C sets are oriented in this manner, we find that all 
chains of the diagram are of the type ~a = {I ~) 
except that one chain, say, a, may be any of the 
types aa = {la}, {2a), or {la, 2a). 
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Actually, Eq. (3.4b) is far more restrictive than 
the above result. This follows from the fact that, 
when the irreducible component is cut in the manner 
described above, one part of the divided diagram 
must not contain more than one external line for 
any C set of the diagram. To see this more ex­
plicitly, let us note that each chain in general belongs 
to several C sets and thus is oriented as many times 
as these C sets are oriented. Frequently we find 
that a chain is oriented in different directions by 
different C sets. Such a chain will be called un­
oriented. We shall now try to see how some chains 
are unoriented while others are not. For this pur­
pose, let us choose a chain a whose orientation is 
unambiguously fixed by (3.4). A chain /3 may then 
be oriented if and only if the lines 1a and 1/3 are 
on the same half of the divided diagram for arbitrary 
choice of the C set which contains both a and /3. 
The chain /3 has such a property, for instance, if 
an end of 1/3 touches an end of 1a. 17 The set of all 
these /3 will be denoted as rea). All other chains are 
unoriented, since their orientation depends on how 
the diagram is cut into two parts. 

However, not all chains of rea) may be oriented 
simultaneously. In fact, if a' is oriented in addition 
to a, the set rea') must contain a but not necessarily 
the whole rea). If we denote by r the set of all 
chains that belong to both rea) and rea'), we find 
that r is either (i) a C set consisting of all chains 
which share an internal vertex with a and a', or 
(ii) a C set consisting of three chains of which two 
are a and a'. In any case, oriented chains can be 
found only in a particular C set. All other chains 
are unoriented and therefore must have the property 
that ~ = ~G' Thus, these chains, except possibly one, 
must not only be of the type ~G = {1~l. but they 
must not contain sub chains ~H which enhance the 
singularity. Enhancement of this kind may then 
arise only from chains of the set r. The exception 
mentioned above is found when all ~ of r are of 
the type ~G = {1~} and some of them have no 
enhancement. In this case one of the unoriented 
chains may be of the form ~G = {1~, 2~}, or ~G = 
{2~1. ~H = {1~}. Diagrams which do not fit with 
these specifications cannot have mass singularity of 
the type being discussed. 

A criterion for the convergence of the integral 
(2.8) at a mass singularity is given by (6.8). We 
shall first show that (6.8) is indeed satisfied by all 

17 A chain {3 may also be oriented by ex if centers of the 
chains ex and {3 can be connected by a continuous line which 
does not intersect with any other chain when the diagram is 
properly drawn on a sheet of paper. However, we have not 
found an unambiguous definition of "proper." 

irreducible components which do not contain any 
three-vertices. It is enough to prove it for the 
diagrams consisting of four-vertices only, since the 
integral is even more strongly convergent in other 
cases. From the absence of three-vertices, it follows 
easily that the only arbitrary solution of (3.4) is of 
the type ~G = {1~} and ~H = empty for all ~. Thus 
nH is zero and nG is equal to the number of lines 
labeled 1 ~ which in turn is the total number of 
chains. Since the latter is 2r - 2 + w, where 2w 
is the number of three-vertices of the chain diagram, 
we find that the degree of divergence d is equal to 
(2r - 2 + w) - 2r = -2 + w. However, (3.4) 
permits in general w ::s; 1 only. Thus, the integral 
(2.8) is finite at the mass singularity, insofar as the 
numerator F is nonsingular. 

We shall now consider the diagrams which consist 
of three-vertices only. In this case, the number of 
chains is equal to 3r - 3. Thus the integral (2.8) 
may diverge for sufficiently large r, unless the 
numerator F vanishes strongly at the same time. In 
the following, we shall examine three typical cases 
of this sort. 

The first example is an amplitude resulting from 
trilinear direct couplings of scalar fields. Since the 
interaction does not depend on the derivatives of 
field operators, we obtain JK = tD = fH = 0 and 
thus d 2:: r - 3, as is seen from (6.8). This means 
that as r increases, an unlimited number of diagrams 
can be found with stronger and stronger mass 
divergences. As is easily seen, the coupling constants 
for such interactions have the dimension of mass. 
To the extent that they are just constants with 
no relation to the masses of particles involved, 
however, they do not compensate the mass diver­
gences which arise from the dynamical singularities 
of propagators. Remembering that field theories with 
such couplings have only three Feynman diagrams 
which show divergence due to high energy virtual 
quanta,18 we may recognize a certain complemen­
tarity between the ultraviolet divergence and mass 
divergence. Since no such interaction has been 
found thus far, and since there seems to be some 
theoretical reason for its absence,19 we shall ignore 
interactions of this type in the following. 

N ext we shall consider a diagram in which each 
vertex describes emission of a photon by a charged 
scalar particle. Following the considerations at the 
beginning of this section, we find that the only 

18 N. N. Bogoliubov and D. V. Shirkov, Introduction to 
the Theory of Quantized Fields (Interscience Publishers, Inc., 
New York, 1959), p. 352. 

19 G. Baym, Phys. Rev. 117,886 (1960). However, Baym's 
argument seems to be not conclusive. 
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possible cases are (i) ~G = f 1 ~ I for all ~, (ii) ~G 
f1~} except that aG = {2a}, where 1a is a scalar 
particle line, (iii) the same as (ii) but 1a is a photon 
line, (iv) ~G = {l~l except that aG = {la, 2a}, 
where 1a is a scalar particle line, and (v) the same 
as (iv) but 1a is a photon line. Obviously, nG is 
equal to 3r - 3 for the first three cases and 3r - 2 
for the rest. To evaluate the degree of divergence d 
for the case (i), let ni ,j be the number of vertices 
where i boson lines labeled 1~ and j photon lines 
labeled 1~ meet. Then the total numbers of such 
boson lines and photon lines are (2n2,1 + 2n2,o + 
nl,l + n l ,o)/2 and (n2,1 + nl,l + no,I)/2, respec­
tively. Since their sum is equal to 3r - 3, we obtain 
(3n 2 •1 + 2n2,o + 2nl ,I + nl,o + no ,I) = 6r - 6. 
Making use of n l .1 + n2.0 = 0 or = n l •o + nO.1 
and fH + fE :::: n2.1 + n2.0,20 we find that 

tH + tK :::: 2r - 2 - max [nu, (nl .o + n o. I )/3]. 

This leads us to the inequality 

d ::; -1 - r + max [nl.l, (nl.o + no. I)/3] 

+ max [tH, (nH + fH)/2]. (8.1) 

In general, we find that nl.O + no.1 ::; 3, fH ::; 2, 
nH ::; 3, and nl.1 ::; 2. Thus we obtain d < 0 for 
any r > 3. When r = 3, t H may take the value 2 
only if n l •1 = O. This leads us to d < O. We may 
obtain d = 0 only for r = 3, tH = 1, and nl.1 = 2. 
This is the only case in (i) where our integral may 
diverge at the mass singularity. In the cases (iii) 
and (v), the lower bound for fH + fK is given by the 
same inequality as above. For (ii) and (iv) , on the 
other hand, this bound must be lowered by one. 
We also find that nH = fH = 0 for (iv) and (v), 
while nH ::; 1 for the cases (ii) and (iii). In all of 
these four cases, the integral (2.8) is found to be 
finite at the mass singularity. It is to be noted 
however that an m divergence may arise from the 
chain a in the cases (iv) and (v). 

Finally, we consider the case where each vertex 
is surrounded by two fermion lines and one boson 
line. As is easily seen, the consideration of the last 
paragraph applies to this case if ni.j is now regarded 
as the number of vertices where i fermion lines 
labeled 1~ and j boson lines labeled 1~ meet. We 
have only to note that a lower bound for tH + tF. 
should now be raised by (nl.1 + n l ,0)/2. The right­
hand side of (8.1) is then reduced by (nl.1 + nl.o)/2. 
Thus, a diagram of this type gives no new mass 

20nl,l + n2.0 is equal to 0 or nl.O + nO.l depending on 
whether the tail ends of oriented chains meet at a vertex or 
a vertex part. The inequality fH + fK ~ n2.l + n2.0 follows 
from the remark (c) of Sec. 2. 

FIG. 5. The diagram (a) contains chains disconnected by 
vertex parts. If these chains are all of the type !; G = { I!; }, 
its mass singularity cannot be stronger than that of the 
diagram (b). The diagram (c) contains chains of the type 
!;G = {I!;,2!;l. 

divergence except possibly an m divergence arising 
from one of its chains. 

We shall not examine explicitly the more general 
case where vertices of various kinds are mixed. 
Since three-vertices give the strongest mass singu­
larity, however, it 'is unlikely that any new divergent 
mass singularity would be found besides those 
discussed already. 

We shall now remove the assumption that each 
chain be connected. A chain may be disconnected, 
for instance, if self-energy parts are inserted in the 
diagram. Since it gives rise to identical propagators, 
however, it will be discussed in Sec. 9. Thus, we 
consider here only the cases where some of the chains 
consist of two lines separated from each other by 
vertex parts. An example is given by the chains 
a, (3, 'Y of Fig. 5(a). Note that the pair la, 2a or 
1{3, 2(3 has only one external line in between, while 
l'Y and 21' are separated by more than one external 
line. This means that 1'G consists of l'Y only and that 
21' cannot enhance it. Thus mass singularity of 
Fig. 5(a) is not altered even if the line 21' is con­
tracted. In fact, if all chains a, {3, l' are of the type 
~G = {I ~), its mass singularity cannot be stronger 
than that of Fig. 5(b) which has no disconnected 
chain. This argument can be generalized to arbitrary 
irreducible components. Thus, in such a case, the 
problem can be reduced to the one which was 
solved in the above. 

If some of the chains a, (3 are of the type ~G = 
f1~, 2~1 in Fig. 5(a), we find that no enhancement 
of mass singularity is allowed. Its mass singularity 
cannot be stronger than that of Fig. 5(c), which 
has only two external lines and in which a, (3, 'Y 

are all of the type ~G = f1 t 2 ~). Essentially the 
same situation is found for any irreducible com­
ponent A. If we contract all lines 2~ of ~G = {1~, 2~) 

in A, we obtain a new diagram At, which can be 
analyzed by our method. Since nG for A is greater 
than that of At, A may in general have a stronger 
mass singularity than At. However, in the important 
cases such as the photon-meson and boson-fermion 
interactions, the value of nG - f K is found to be 
the same for both A and At. Thus, even if we remove 
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a b 

FIG. 6. The diagram (a) 
contains identical prop­
agators caused by inser­
tion of a self-energy part. 
The diagram (b) is ob­
tained from (a) by con­
tracting the line 4. 

the restriction on chains, we may not encounter 
with any mass singularity stronger than those found 
already. 

We shall not discuss here the case where B - A 
is not empty, since it will, in general, give a mass 
singularity not stronger than the case B = A. 

9. SELF-ENERGY PARTS 

Thus far we have considered Feynman amplitudes 
which do not contain any identical propagators. 

In order to determine the mass singularity of a 
general amplitude, we have to know how our con­
siderations of the last sections are modified when 
identical propagators are involved. Such a situation 
arises, for instance, when self-energy parts are 
inserted in arbitrary lines of a given diagram. We 
should therefore like to know whether or not it 
induces any new mass divergence or enhances the 
singularities considered previously. 

To find an answer to this question, we shall first 
examine the property of a simple Feynman diagram 
of Fig. 6(a) which consists of three chains a = 
II, 2, 3, 4\, f3 = (5\, I' = {6}. We are interested in 
the case where chains f3 and I' form a self-energy 
part of the second order. We shall therefore assume 
that qa = q4 and ma = m4. A straightforward ap­
plication of the formula (2.8) gives the amplitude 

f Fz; dz" dzp dZr 8(1 - z" - Zp - zJ dx(a) dx({3) dx(I') 
U

2
(z)[z" V" + zpVp + z'{ V,!, - (z"zpz'{jU)(q" + qp + q'{)2 - ieJ2' 

(9.1) 

The self-energy term is not yet separated in this 
expression. In order to perform the separation, it 
is actually more convenient to parametrize the 
amplitude in two steps, first for lines 5 and 6 and 
then for the entire diagram. After the first para­
metrization is made, the contribution of the lines 
5 and 6 can be written as 

l A' dV f F5e dx5x" dXe 8(1 - X5 - X6) 
m.' x5m~ + X6L2 - X5X6(k" + q4)2 - ie ' 

(9.2) 

after the mass m4 is renormalized. Since [(k" + q4)2 -
mUx6 - L2jX5 + ie(1 has the form of a propagator 
as a function of k" + q4, the integration of the 
whole amplitude with respect to k" can be carried 

where a' and b' are derived from a and b of (9.4) 
and a now stands for the chain {l, 2, 3} rather 
than {l, 2, 3, 4}. 

If m4 < ms + m6, the last factor of (9.5) is finite 

where A is an ultraviolet cutoff, k" is the variable 
of integration of the chain a, and F56 is the part 
of F arising from lines 5 and 6. Noting that FS6 

can be written as21 

where a is a finite constant and b is an invariant 
function of (k" + q4)2 finite at (k" + q4)2 - m~ = 0 
(for definiteness, the line 4 is assumed to be a boson 
line), one finds easily that (9.2) becomes 

(9.4) 

out easily. Taking account of the fact that 
(k" + q4)2 - m! of (9.4) cancels one of the propa­
gators corresponding to the lines 3 and 4, we find 
that the integral (9.1) should be replaced by 

throughout the domain of integration. Thus, (9.5) 
has essentially the same structure as the amplitude 

21 In the general case, the boundedness of a and b is a 
restriction on the kind of interaction. 
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for the diagram of Fig. 6(b), which does not contain 
identical propagators. In particular, the degree of 
divergence of the mass singularity of the former is 
the same as that of the latter. Thus our problem can 
be reduced to the case to which the general method 
developed in the last sections applies. This reduction 
may be extended to the general case. Thus the 
appearance of identical propagators due to self­
energy insertion in the internal lines will not give 
rise to any new mass divergence. As a matter of 
fact, this result is more or less what one would 
expect insofar as one follows the usual procedure of 
mass renormalization of internal lines. 

When m4 > m5 + m 6, the a' term of (9.5) becomes 
singular inside of the domain of integration. We 
may write it as a sum of principal value and a-func­
tion parts. Then, mass singularity of the amplitude 
containing the first part can be treated by the method 
discussed above, since this singularity is not directly 
related to a mass singularity. The second part 
appears only when the lines 5 and 6 are on the mass 
shell. To find mass singularity of the corresponding 
amplitude, it is convenient to make use of the fact 
that the amplitude (9.1) is a derivative of the ampli­
tude for the diagram of Fig. 6(b) with respect to 
m:. In this case, we should not regard the lines 5 
and 6 as self-energy insertions. Note also that this 
mass singularity arises from the chain a and not 
from the chain {3 or 'Y. 

10. MASS SINGULARITY OF GENERAL FEYNMAN 
AMPLITUDES 

In the preceding sections, we have seen how 
proper Feynman amplitudes will behave in the 
neighborhood of its mass singularities. We have 
found in particular that each mass singularity 
arises from a small neighborhood of a vertex and is 
not very sensitive to the over-all structure of the 
Feynman diagram. Physically, however, we should 
like to characterize an amplitude by its external 
lines rather than the details of its internal structure. 
We shall therefore reconsider our result from this 
point of view, classifying Feynman diagrams ac­
cording to the number N of their external lines. 
In particular, it is important to find which diagram 
has the strongest mass singularity among those of 
given order and given initial and final states. (Of 
course, we shall exclude trilinear direct couplings of 
scalar fields from our consideration.) For the mo­
ment, let us consider proper diagrams only. 

N = O. Since such a diagram has no external 
line, there is no enhancement of mass singularity 
either. Hence, the mass singUlarity of any diagram 

b 

FIG. 7. General structure 
of diagrams in which two 
external lines are attached to 
the same chain. 

which describes a vacuum-to-vacuum transition is 
always finite insofar as rp3 interactions of scalar 
fields are excluded. 

N = 2. The external lines are attached either to 
the same chain or to different chains. In the first 
case, the diagram must look like Fig. 7(a), where 
the shaded part is a structure consisting of internal 
lines only. If the lines 1a and 3a are identical, we 
may examine the mass singularity of Fig. 7 (b) 
instead, as was shown in Sec. 9. For any irreducible 
component of Fig. 7(b), we find that nH + nK :::; 1. 
Thus, as is seen from Sec. 8, no mass divergence 
may arise from any multi-loop irreducible com­
ponent. The only mass singularity which may 
diverge is the one that comes from the chain a 

when the condition 

(10.1) 

is satisfied, where p = qla - q2a is the external 
momentum. Thus, if p2 ~ 0, no mass divergence 
of the m type appears in such an amplitude. Even 
if p2 vanishes, the amplitude is still finite, since 
it is proportional to p2 [or (p2)1/2] on dimensional 
grounds.22 Of course, ,ve also find a A singularity of 
the chain a when 

or 
m 1a = 0, m;a = p2. (lO.2) 

This does not diverge as far as the leading term in 
the expansion of the amplitude in powers of p2 - M2 
is concerned (M is the mass of the external line). 
However, it may give rise to a A divergence in the 
second term which contributes to the wave function 
renormalization. 

Let us now consider the second case. Again no 
mass divergence may arise from multi-loop ir­
reducible components, even when nH = 2. However, 
the amplitude may now contain several single-loop 
irreducible components which satisfy the conditions 
of the type (10.1) simultaneously. Obviously, the 
singularity will be the stronger, the more single­
loop components belong to this type. As is easily 
seen, in a given order of perturbation theory, the 
largest number of such loops will be found in a 

22 Strictly speaking, this is true only if the dimension 
of coupling constants is not equal to a positive power of mass. 
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21/21 28 

~I .. · .. ~ 
la 18 

II/Iy 

2a 21/ 2y 28 

-CJ:X) ... o-
la IfJ Iy 18 

a b 

FIG. 8. The diagram (a) is an example of diagrams with 
two external lines which have the strongest mass singularity. 
The reduced diagram (b) is obtained by contracting all 
vertical lines of (a). 

diagram of the type shown in Fig. 8. When all 
chains represented by the vertical lines are con­
tracted, we obtain the diagram of Fig. 8(b), which 
consists of single closed loops only. Let the number 
of closed loops of Fig. 8(a) be s. Then the integral 
behaves something like m or m2 times (In m)8 in 
the neighborhood of (10.1), where m stands for 
the masses mIa, mIP, etc.22 As far as the X singularity 
at (10.2) is concerned, it is finite for the leading 
term of the expansion in p2 - M2, but may give 
one power of logarithmic X divergence to the second 
term. Incidentally, the case N = 1 may be treated 
as a special case of Fig. 7(a) in which the two 
external lines come out from the same vertex. 

N = 3. There are three cases depending on 
whether (i) all three external lines belong to the 
same chain, (ii) two of the external lines are attached 
to one chain, or (iii) all external lines are attached 
to different chains. In the cases (i) and (ii) , mass 
singularities arising from internal vertices are non­
divergent. Only in the case (iii), divergent mass 
singularities other than X or m divergences may be 
found. However, they are at most logarithmically 
divergent. Aside from them, mass divergences may 
arise only from irreducible components of single 
closed loop type. In a given order of perturbation 
theory, diagrams with strongest mass singularity 
are those which may be reduced at the mass singu­
larity to the form shown in Fig. 9 by contracting 
smallest number of chains. The leading term of the 
corresponding amplitudes would look like (a In X + 
b In m) (In m) 8 since each loop may contribute one 
m divergence while only one loop with three internal 
lines may contribute a X divergence. Here s is the 
number of closed loops in Fig. 9, a, b are numerical 
constants, and In X and In m stand for X and m 
divergences. 

6 
-{) ... c& ... o-

a b 

FIG. 9. Examples of reduced diagrams for !'1 = 3 which have 
the strongest mass singulanty. 

FIG. 10. An example of reduced 
diagrams for N = 4 with the strongest 
mass singularity. 

N 2:: 4. Analyzing diagrams with four external 
lines in the same manner, we find that strongest 
mass singularity may be obtained when the diagram 
is reducible with minimum contraction of chains to 
the form shown in Fig. 10 which consists of two 
3-vertex parts touching with each other at one 
point. At the mass singularity, this amplitude will 
behave as (a In X + b In m)2(In m)8. It should be 
noted that many other diagrams also behave as 
(In X)2 but are not as singular as this one at m = O. 
Similarly some diagrams depend on m as (In m)· 
but behave as (In X)l or (In X) 0 at X = O. These 
considerations may be extended easily to arbitrary N. 
It will be not difficult to see that the amplitude 
will behave at most as (a In X + bIn m)[N/2! (In m)', 
where [N /2] is an integer not exceeding N /2 (N 2:: 3). 

It is easy to remove the restriction that Feynman 
diagrams are proper. Then, a Feynman diagram 
will, in general, consist of several proper parts con­
nected with each other by fixed internal lines. Mass 
singularities of the whole amplitude may be written 
down by multiplying contributions of all proper 
parts. We have only to note that singularities of 
those fixed internal lines which connect self-energy 
corrections of external lines to the main body of the 
diagram are removed when the mass renormaliza­
tion is carried out. This procedure introduces X 
divergences in the amplitude, as was mentioned 
already. 

We shall now summarize the results obtained. 
At a mass singularity defined by (3.4), a Feynman 
amplitude can be reduced to a product of irreducible 
components. The behavior of the whole amplitude 
in the neighborhood of mass singUlarity is thus 
determined by that of irreducible components. In 
general, mass singUlarity arising from an irreducible 
component with s-ple loops is less singular than 
that of a product of s single closed loops. Thus, of 
all Feynman diagrams of given order that have no 
identical propagators except those caused by self­
energy insertion, the strongest mass singularity is 
found in the diagrams which can be reduced to single 
loops of two or three elements by contracting as 
few internal lines as possible. Loops with two lines 
contribute primarily a In m factor to the amplitude. 
If it is a self-energy insertion to an internal line, 
however, it may give a contribution of the type 
a In X + b In m instead. Each loop with three lines 
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may contribute a factor In mea' In A + b' In m). 
Finally we shall discuss the mass singularity of 

the absorptive part of a Feynman amplitude, which 
is obtained from (2.8) by replacing the denominator 
(v)-n+2r by 8(n-2r-ll (V). Of course, the absorptive 
part exists only when the total energy in some 
channel is larger than its threshold value.22a At a 
mass singularity, it can be reduced to irreducible 
components following the procedure of Sec. 5. The 
same result is also obtained if one takes the absorp­
tive part of the fully reduced amplitude (5.10). 
Thus, if d < ° holds for the Feynman amplitude or 
its dispersive part, the absorptive part will also be 
finite at the mass singularity. As a matter of fact, 
because of stronger restriction on the domain of 
integration, mass singularity of the absorptive part 
may not be as strong as that of the dispersive part 
insofar as the diagram does not contain identical 
propagators other than those caused by self-energy 
insertions.23 

To appreciate this result, let us note that taking 
the absorptive part means putting on the mass 
shell several internal lines which appear in a real 
intermediate state. In general, the absorptive part 
is a sum of several such terms. When a line is put 
on the mass shell, it may be regarded as a pair of 
external lines. Thus, a diagram with some of its lines 
fixed on the mass shell may have a mass singularity 
stronger than that of the Feynman amplitude itself. 
In spite of this, the absorptive part is no more 
singular than the dispersive part. We may therefore 
conclude that, when d < 0, mass singularities of 
various terms of the absorptive part cancel each 
other because of the specific relative phase of these 
terms. In fact, if some Feynman propagators (2.1) 
are replaced by other kind of Green's functions in 
(2.3), such a cancellation would no longer be pos­
sible, and the corresponding amplitude would have 
a mass singularity stronger than that of (2.3). 

11. TOTAL TRANSITION PROBABILITY 

We shall now come back to the cancellation of 
mass divergences in the total transition probability, 
which was the starting point of our investigation. 
This problem may be best handled by introducing 
cut diagrams. 24 

Let us consider transitions from a given initial 

22. See the footnote 24a. 
23 As was mentioned at the end of Sec. 9, some self-energy­

like diagrams must be treated differently from the usual 
self-energy diagram. The absorptive part of the former may 
have a mass singularity stronger than that of the latter. 
It is not included in the case N = 2 discussed above. 

24 T. Kinoshita, Pro gr. Theoret. Phys. (Kyoto) 5, 1041; 
(1950). 

a b 

FIG. II. The 
diagram (a) con­
tains iden tical prop­
agators if mH = 
m2, for some ~ = 
a, (3, •.• , 'Y, Ii. 
The diagram (b) is 
obtained from (a) 
by contracting the 
12ines 2a, 2{3, ... , 

0. 

state to all possible final states. If we denote the 
corresponding Feynman amplitudes as T l , T 2 , ••• , 

the total transition probability is proportional to 
Li ,j T;T j , where the summation is over those i, j 
whose final states are identical. The matrix multi­
plication in T;T j means integration over the entire 
phase space of the final state of T j • If T; is expressed 
by a diagram obtained from Ti by interchanging 
past and future, T;T j may be represented bv a 
diagram which is obtained by connecting final state 
lines of T j with corresponding initial state lines of 
T;. To distinguish it from a Feynman diagram, let 
us draw a continuous (horizontal) line that goes 
through all points of connection without intersecting 
any internal line of T; and T j • Let us denote by Td 
a diagonal Feynman amplitude which is obtained 
by removing the cut line from T;T j , and consider 
a set of all diagrams which reduce to Td when the 
cut line is removed. Then, by optical theorem, the 
sum of corresponding T;T j is equal to the absorptive 
part A d of Td. This sum will be called a cut diagram. 24a 

The cut lines represent various real intermediate 
states of Ad. Obviously the total transition proba­
bility may be regarded as a sum of cut diagrams. 
Thus, mass singularity of the former can be found 
by examining that of the latter. Results obtained 
in the last sections may not be applied directly to 
cut diagrams, however, since they are diagonal in 
the sense that for each incoming external line of Td 
we can find an outgoing external line which carries 
the same momentum. As a consequence, we may 
find identical propagators in some Ad. 

If some internal lines of Ad are identical, Ad may 
have a mass singularity of Coulomb type in addition 
to the usual one.25 It is easy to see that this may 
occur only to lines belonging to the same chain. An 
example of this situation is shown in Fig. U(a). 
Generalizing the method discussed at the end of 
Sec. 4, we find that its mass singularity is obtained 

• 24. A cu~ diagram is not the same as the sum of all topolog­
ICally posslbl.e cuts of Td unless the energy is sufficiently large. 
However, thIS does not affect our argument since cancellation 
of mass divergences occurs only among those intermediate 
states that can be opened up at the same energy. 

25 For the definition of Coulomb type see the last paragraph 
of Sec. 4. 
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from that of Fig. l1(b), which does not contain any 
identical propagator, by differentiation with respect 
to the masses mia, mi#, ... , mi-y, mi"~ Singularities 
at the zero of m 1#, .•• , m1-y may be logarithmic at 
most. However, singularities at m 1 a = 0 and ml! = 0 
may be stronger because of enhancement due to 
the lines 3a and 38. In this manner cut diagrams 
with identical propagator.s can always be reduced 
to those in which all propagators are different. 

When Ad has no identical propagator, the result 
of the last section can be applied without qualifica­
tion. Thus, it is free from mass divergences which 
may arise from purely internal vertices of Ad. The 
only mass divergences are A and m divergences that 
arise from the self-energy and vertex parts attached 
to the external lines of Ad and A divergence due to 
an internal line which is emitted by an initial-state 
line and absorbed by a final-state line of A d.26 

In order to examine mass divergences caused by 
particles of the initial state, it is convenient to con­
sider a diagram in which initial-state lines of Ad 
are connected with the final-state lines carrying the 
same momentum. These lines may be distinguished 
from others making use of a second cut line repre­
senting the initial state of Ad. For each diagram like 
this, we can find a Feynman diagram T VI describing 
a vacuum-to-vacuum transition, which looks identi­
cal 'with it except for the cut lines. Let us consider 
a set ~ of all such diagrams which give the same T, 
when the cut lines are removed. We shall call ~ 
a double cut diagram. 27 Then the total transition 
probability is a sum of several ~'s, and each ~ is 
a sum of several Ad. We shall emphasize here the 
difference of ~ and T". Firstly, in closing the external 
lines of a cut diagram, we do not integrate over the 
momenta of initial-state particles, whereas T, is 
fully integrated with respect to the corresponding 
momenta. Secondly, initial-state lines of ~ and the 
corresponding lines of T, propagate energy in op­
posite time directions. 

If a double cut diagram ~ consists of several Ad, 
the initial-state line of one Ad corresponds to an 
internal line of another Ad. Thus, in ~ as a whole, 
no line is fixed on the mass shell. We may then 
expect that mass singularity of ~ is weaker than 
that of individual Ad. In fact, as is discussed in 
Appendix A, A divergences caused by emission and 
absorption of a quantum by the same external line 
or by different external lines carrying the same 

26 This X divergence belongs to the type discussed at the 
end of Sec. 9 and in reference 23. 

27 Double cut diagrams were first considered by T. 
Kinoshita (1950, unpublished). See also N. Nakanishi, 
Progr. Theoret. Phys. (Kyoto) 19, 159 (1958). 

momentum cancel each other completely in this 
manner.28 We find, however, that m divergences 
do not cancel in ~. If ~ consists of one Ad, there is 
of course no cancellation of m divergence. However, 
such a ~ is free from A divergence since it does not 
satisfy the condition for the appearance of A di­
vergence. 

In summary, when the total transition probability 
is expressed as a sum of ~'s, not only the total 
probability but each ~ is free from A divergence. 
We also find in ~ a complete cancellation of m 
divergences, insofar as they arise from the final­
state lines of the transition amplitude. However, 
~ has, in general, residual m divergences arising 
from self-energy and vertex parts attached to the 
initial-state lines. Thus, the only mass divergences 
to be found in the total transition probability are 
the m divergences caused by the vanishing of masses 
of particles in the initial-state and the Coulomb­
type divergences that arise , ... ·hen one zero-mass par­
ticle is exchanged between the colliding particles. 29 

In particular, in the case of decay of an unstable 
particle, there is no singularity of Coulomb type. 
The only mass divergence of the total decay proba­
bility may arise from the vanishing of the mass M 
of the decay particle itself. To the extent that we 
are interested in the nonzero M only, there is there­
fore no mass divergence at all in the decay prob­
ability. We have thus arrived at a general proof of 
our conjecture that mass divergences of partial decay 
probabilities cancel each other completely in all orders 
of perturbation theory when they are put together to 
form the total decay probability.30 

It seems to be reasonable to give the following 
physical interpretation for the cancellation of m 
divergences. (For definiteness, let us consider the 
emission of a photon by an electron of zero mass.) 
If the electron mass is zero, it emits photons so 
easily that, when the interaction is switched on, it 
becomes physically impossible to distinguish an 
electron travelling alone from one with a cloud of 
photons and pairs emitted in precisely the same 
direction insofar as the charge and four-momentum 
of the former are the same as the total charge and 
four-momentum of the latter. In other words, while 
measurement of the total energy of such an undif­
ferentiated flux of electrons and photons is physically 
meaningful, measurement of the energy of an indi-

28 N. Nakanishi, reference 27. 
29 Here the exchanged particle may emit several particles 

before it is absorbed. Thus, Fig. Il(a) may be regarded as a 
term contributing to the cross section for such a collision. 

30 It should be noted however that this result holds only 
for unrenormalized probabilities. 
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vidual particle of the flux is impossible. Conse­
quently, we may find a sensible answer to the form~r 
question even in the limit of zero mass and m 
perturbation expansion, but a divergent and mean­
ingless result for the latter. This remi~ds us of ~ 
similar situation in the case of the mfrared dI­
vergence. 

This interpretation will apply equally well to the 
cancellation of m divergences which arise from the 
final states of a collision process. If we accept it, 
we may also understand ,,,hy the total cross section 
should have m divergences due to the initial state 
particles. It is simply because the usual definition 
of the initial state in terms of an incoming particle 
with definite energy and momentum becomes un­
realistic in the limit where m divergences appear. 
We should instead define the initial state in terms 
of a flux that is an eigenstate of the total energy­
momentum operator and is a certain superposition 
of state vectors which describe real zero-mass 
particles travelling in the same direction. If we 
consider a collision cross section of these fluxes, 
we find that the cut line at t = - co may be applied 
more freely than the previous case to a double cut 
diagram A because of the enlarged initial state. If 
the cut at t = - co can be applied as freely as the 
cut at t = + co, A will behave very much like the 
vaeuum-to-vacuum diagram Tv with respect to its 
mass singularity. But, the latter is free from mass 
divergence as was shown in Sec. 10. Thus, there 
will be a complete cancellation of m divergences in 
A that are associated with the initial-state particles. 
Although we have not examined this probl~m in 
full detail, it seems very likely from our conSIdera­
tion of Appendix A that we can in fact form an 
initial-state vector ,,,hich has such a property. 

Insofar as we stick to the observed mass values 
of the known elementary particles, there is of course 
no fault in the conventional definition of initial 
state. The general consideration of mass singularity 
developed in this paper simply tells us how to find 
the leading terms of the cross section when the 
masses of particles are negligibly small compared 
with the total energy involved. 

We have not explored the possibility that mass 
divergences of unrelated diagrams may cancel in 
the total cross section. Such a situation might be 
encountered when the interaction has a special 
property such as the in variance under the gauge 
transformation. Even then, we may not find a com-
plete cancellation in general. . 

Finally, we shall emphasize that the conclUSIOns 
of this and preceding sections hold only for unre-

normalized amplitudes. How it will be modified by 
the renormalization will be discussed in the follmving 
section. 

12. DISCUSSION 

In this paper we have investigated the behavior 
of arbitrary Feynman amplitudes at the mass 
singularity. Since we have not restricted the form 
of interaction except that it should not give a singu­
lar numerator in any Feynman amplitude, our 
method and result will be applicable to various 
cases of physical interest. However, the usefulness 
of our theory is limited at present in several respects. 

In the first place, we have formulated it in terms 
of perturbation theory. Thus, the results may not 
hold for an exact amplitude, although some features, 
being found in all orders of perturbation expansion, 
may hold even in the exact theory. Secondly, we 
have not fully exploited the analyticity of a Feyn­
man amplitude as a function of mass variables. We 
have simply defined a mass singularity as a patho­
logical solution of the Landau condition, and then 
estimated the strength of mass singularity by a 
somewhat crude integration. We might be able to 
learn a lot more by treating a Feynman amplitude 
as an analytic function of both external momenta 
and mass variables. Finally, we have thus far not 
considered the "charge" renormalization although 
we have assumed that the mass is renormalized and 
that external lines are properly normalized. Our 
theory therefore gives the mass singularity of un­
renormalized amplitudes. In fact, it holds for any 
interaction, whether it is renormalizable or not, 
insofar as everything is made finite by ultraviolet 
cutoff. 

For physical application of our result, we have 
to combine all Feynman diagrams contributing to 
a given transition and carry out the charge re­
normalization. Since we have not done this yet, 
let us simply outline ,vhat kind of problems we may 
encounter in such an attempt. If we take quantum 
electrodynamics as an example, the renormaIization 
of an arbitrary amplitude is achieved by substitut­
ing the unrenormalized electron propagator S t, 
photon propagator D;', and verte~. part r' ~y the 
corresponding rcnormalized quantItIes accordmg to 

S ;'(e~) = Z2S Fc(eiL 

r'(e~) = Z~l r c(ei), 
(12.1) 

where eo is the bare charge and Zl, Z2. Z3 are the 
renormalization constants. Mass singularities of un­
renormalized Green's functions can be examined by 
the method developed in this paper. For instance, 
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it is seen immediately from our consideration of 
Sec. 10 that Sf,.(p) or Df,.(k) has no mass divergence 
if p2 ~ m 2 or k2 ;;c O. On the other hand, renormaliza­
tion constants have mass divergences since they are 
defined with respect to free-particle states. Proper­
ties of these mass divergences may be determined 
by our method, or by a dimensional consideration 
making use of the knowledge of high-energy cutoff. 
Mass divergences of renormalized propagat.ors may 
then be found from the fact that Sf,. and Df,. are 
free from mass divergence. This property of propa­
gators was first noted by Gell-Mann and Low. 4 

When ,ve renormalize an amplitude using (12.1), 
parts of mass divergences are absorbed by the ob­
served charge el , leaving uncompensated mass di­
vergences of renormalized Green's functions in the 
observable amplitude. As far as the infrared di­
vergence is concerned, however, the renormalization 
does not affect the exact amplitude since Zl = Z2 
by Ward's identity and Za has no infrared divergence 
at all. 28 Specifically, the complete cancellation of 
infrared divergence in the total transition proba­
bility is preserved even after it is renormaIized. 
Thus only m divergences will be affected by the 
charge renormalization. It is not difficult to see that 
this does not alter the degree of divergence of the 
strongest mass singularity in each order of per­
turbation expansion. For practical applications, how­
ever, it is of course important to know the explicit 
mass dependence of renormalized amplitudes which 
we have not found yet. A similar remark applies 
also to the pseudoscalar interaction of the pion­
nucleon system, except that no simplifying relation 
like Ward's identity is found in this case. 

As examples of nonrenormalizable cases, we shall 
now examine the mass singularity of radiative cor­
rections to various weak decay processes. These 
processes contain a weak vertex in the lowest order 
besides the usual electromagnetic vertices. We know 
of no rule for renormalizing the weak vertices. In 
fact, in most cases,a no attempt is made to re­
normalize the theory except for the mass. The 
resulting radiative corrections are therefore not well 
defined and even infinite in general. In the universal 
V - A theory of Feynman and Gell-Mann,31 in 
which, however, the universality of weak interactions 
is assumed for the bare coupling constants, such 
radiative corrections must be made before theoretical 
prediction is compared with observation. If we make 
the radiative correction finite by introducing a 
Feynman cutoff in photon propagators, we find a 

31 R. P. Feynman and M. Cell-Mann, Phys. Rev. 109, 193 
(1958). 

few percent discrepancy between the observed and 
calculated ratios of lifetimes of J.L-e and (3 decays.32 
This seems to imply that such an assumption is too 
naive and we must perhaps take account of electro­
magnetic and weak vertex form factors. 3a However, 
for any reasonable choice of form factors, these 
modifications of theory will affect only the contri­
bution of high-energy virtual quanta and thus mass 
dependence of the total decay rate will not be 
altered. 

On the other hand, if one tries to renormalize 
such a theory in one way or another, one finds that 
m divergences appear in the total probability, al­
though the A divergence may be avoided.34 This 
is because the renormalization does modify not 
only the contribution of high-energy quanta, but 
also that of low-energy ones in contrast to the form 
factors discussed above. One source of m divergence 
is that renormalization constants corresponding to 
ZI and Z2 do not cancel each other because there 
is no relation like Ward's identity in this case. 
Furthermore, the Z3 factor which comes from radia­
tive corrections to the innerbremsstrahlung processes 
accompanying decay contains an m divergence. This 
is a purely electromagnetic effect, and will be found 
for the first time in the fourth-order radiative cor­
rection. Since this effect is common to both J.L - e 
and (3 decays, it will cancel out if one takes the ratio 
of total decay rates. Besides the appearance of m 
divergence, this theory is different from that of 
Feynman and Gell-Mann in that it is not possible 
to state the universality of weak interactions in 
terms of bare coupling constants. 

Similar consideration applies to the radiative cor­
rections of the branching ratio of pion decay. As is 
well known, if a pion is coupled with equal strength 
to the (parity violating) weak vector currents of 
lepton pairs (J.L, jI) and (e, jI), the 7r-e to 7r-J.L branching 
ratio RO is given by 

RO = (m~/m:)2R~, (12.2) 

when no radiative correction is included. R~ is the 
branching ratio if lepton pairs are assumed to form 
a scalar instead. When radiative corrections of all 

32 R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A., 
Seeger, Phys. Re:,. Letters 5, 323 (1960); R. A. Reiter, 
T. A. RomanowskI, R. B. .Sutton, and B. C. Chid ley, ibid. 
5, 22 (1960); V. L. Telegdl, R. A. Swanson, R. A. Lundby, 
and D. D. Yovanovitch, quoted in reference 34; R. J. 
BIin-Stoyle and J. Le Tourneux, Phys. Rev. 123, 627 (1961)' 
A. Altman and W. M. MacDonald, Univ. of Maryland; 
preprint, (1962). 

33 This possibility has been examined in detail by C. R. 
Schumacher (private communication). 

34 Dispersion theoretical approach by L. Durand, L. F. 
Landovitz, and R. B. Marr, Phys. Rev. Letters 4 620 (1960) 
belongs to this category. ' 
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orders are included, (12.2) is replaced by 

R = (m~/m~)2Rn, (12.3) 

where m~ and m~ are still the same bare masses of 
electron and muon, respectively.35 If we make no 
charge renormalization, Rn does not have any mass 
divergence at m, = 0 or mp = O. This means that 
Rn/R~ is finite at m, = 0 and will be very close to 
1, if the high energy contribution is cut off properly. 
On the other hand, m~/m, may contain terms like 
In me' Accordingly, m~/m~ may not be very close 
to m,/mw Thus, a deviation of the observed ratio 
R from (m./m~)2Rn :=::d (m./mp)2R~ will give an 
estimate of the quantity [(m~/m.)/(m~/m"W. If one 
assumes that the electron and muon interact with 
the photon in the same manner, this mass ratio 
differs from 1 by about 4% in the second order which 
improves considerably the agreement with the ob­
servation.as On the other hand, if the theory is 
renormalized, there will no longer be any good 
reason why Rn should be close to R~, and thus, the 
above argument will break down. Of course the 
formula (12.3) is valid only if the pion is coupled 
to leptons through a pure axial vector baryon cur­
rent and not complicated by the pion form factor. 
It would therefore be not surprising if (12.3) and the 
following argument are modified substantially in a 
more rigorous treatment. Nevertheless, the good 
agreement of theory and experiment suggests that 
there may be some physical reason why the above 
consideration is approximately correct. 

The discussion given above reveals a rather 
puzzling feature in that while an unrenormalized 
theory suffers from ultraviolet divergences but be­
haves in a reasonable way at m singularities, the 
situation is reversed in a renormalized theory. Of 
course this is no problem from a practical point of 
view since m divergences do not occur for the ob­
served values of masses. However, if we can resolve 
this problem, it would be of considerable interest 
theoretically, since it will enable us to formulate 
a quantum electrodynamics which describes inter­
action of photons \vith zero-mass electrons.37 In 
view of various divergences which may be found 
everywhere in such a theory, it has not been obvious 
whether it may be formulated in a consistent way 
at all. However, our consideration of Sec. 11 and 

35 M. A. Ruderman and W. K. R. Watson, Bull. Am. 
Phys. Soc. 1, 383 (1956); R. Gatto and M. A. Ruderman 
Nuovo cimento 8, 775 (1958). ' 

3& H. L. Anderson, T. Fujii, R. H. Miller, and L. Tau, 
Phys. Rev. 119, 2050 (1961). 

37 Importance of the study of quantum electrodynamics 
for the zero-mass electron has been emphasized recently by 
R. P. Feynman, "Report of the Solvay Conference 1961" 
(to be published). 

Appendix A indicates that we may be able to 
eliminate m divergences from the theory if we 
realize that when m divergences occur, it is no longer 
possible to identify a line of Feynman diagram with 
an observed particle, and that we therefore have to 
characterize the initial and final states in terms of 
flux of particles travelling with the same velocity 
rather than in terms of a single particle. Unfor­
tunately, this result seems to hold only if charge 
renormalization is disregarded. When the theory is 
renormalized, the cancellation of m divergences seems 
to be broken because of the Za factor. Thus we still 
do not have a consistent formulation of quantum 
electrodynamics for zero-mass electron. It should 
be pointed out, however, that this is based on the 
assumption that the renormalization method used 
in the case m ~ 0 can also be applied to the case 
m = O. This may not be correct since, as mentioned 
above, one particle state cannot be defined for 
m = 0 because of the degeneracy of the eigenstates 
of the total energy-momentum operator of inter­
acting fields. It would be extremely interesting if 
this point can be clarified. Since the perturbation 
theory is certainly not the most satisfactory tool 
for such a consideration, it is desirable that it is 
treated by a method somewhat similar to the 
Bloch-Nordsieck method of the infrared problem 
that does not rely on perturbation expansion. 

Finally, let us argue why it may be useful to 
study quantum electrodynamics of the zero-mass 
electron. It is primarily because it may lead us to 
the understanding of the age-old question of whether 
or not all of the electron mass is of electromagnetic 
origin. If the electron mass is zero, the theory will 
be invariant under the transformation if; -Jo 'Ysif; 
no matter how often the electron interacts with 
real or virtual photons. On the other hand, the 
electron mass is not invariant under such a trans­
formation. Thus, it seems that the observed electron 
mass cannot be produced if there is no mass to start 
with. In discussing related problems, however, 
several authors have recently pointed out the pos­
sibility that such symmetry argument may fail if 
we go beyond perturbation theory.a8 Thus, if we 
succeed in formulating a theory of quantum electro­
dynamics for the zero-mass electron without use of 
perturbation theory, we might be able to tell whether 
electron mass can be explained within the scheme 
of pure electrodynamics or if it has to be determined 
by interaction with other particles such as the 
proton. 

.. W. Heisenberg, Z. Naturforsch.14, 441 (1959)' Y. Nambu 
and G. Jona-Lasinio, Phys. Rev. 122,345 (1961).' 
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Q b d 

FIG. 12. Feynman diagrams describing radiative corrections 
to the 7r-e decay. Diagrams with - 5m vertex are not included 
for simplicity. 

What is perhaps even more important is that 
the study of this problem will lead us to a better 
understanding of closely related topics such as the 
chirality invariance, conservation of axial vector 
current in weak interactions,39 and various sym­
metry laws of strong interactions,40 which are sup­
posed to hold exactly only in the limit of zero mass 
or zero mass difference. It is my feeling that the 
method of mass singularity, although it has not 
been completely explored, will be one of the effective 
approaches to these fundamental questions of ele­
mentary particle physics. 
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APPENDIXA. 
QUALITATIVE DISCUSSION OF CANCELLATION OF 

MASS DIVERGENCES 

Logarithmic divergences associated with vanish­
ing masses of partial transition probabilities cancel 
each other when they are summed into a total 
transition probability. We shall give here a quali­
tative argument of how such a cancellation takes 
place. For this purpose, let us take as an example 
the radiative corrections to 7r-e decay, given by 
Fig. 12, where the weak interaction vertex is assumed 
to be nonderivative for simplicity and two-photon 
vertices are omitted being irrelevant to our con­
sideration. According to Sec. 11, the total decay 
probability can be expressed as a sum of cut dia­
grams of Fig. 13. Each cut diagram represents a 

39 S. Bludman, Nuovo cimento 9, 433 (1958); M. Gell­
Mann and M. Levy, ibid. 16, 705 (1960); J. Bernstein, 
S. Fubini, M. Gell-Mann, and W. Thirring, ibid. 17, 757 
(1960); Y. Nambu, Phys. Rev. Letters 4, 380 (1960). 

40 J. Schwinger, Ann. Phys. 2, 407 (1957); J. J. Sakurai, 
ibid. 11, 1 (1960); M. Gell-Mann and F. Zachariasen, Phys. 
Rev. 123, 1065 (1961); M. Gell-Mann, ibid. 125, 1067 (1962). 

sum of several partial transition probabilities. Letters 
on the ends of each cut line show from which 
diagrams of Fig. 12 the cut diagram in question is 
made. 

To find out how cancellation of mass divergences 
takes place among the partial probabilities belonging 
to each cut diagram of Fig. 13, let us first take 
Fig. 13(c) and look at the internal lines k, q, p, which 
are the only lines that depend on how the graph is 
cut. Noting that a line q on the mass shell is repre­
sented by -27ri opel - m2

), we see that these lines 
contribute a factor 

op(e) ~p(p2 -;;- m
2

) + ~ Op(q2 _ m2) 

q - m 

[ 
o(e) + O(p2 -_ m2)] X q=p+k 

p2 _ m2 e ' (AI) 

to the absorptive part, where op(e) = O(k) o(e) 
and O(k) is equal to 1 or 0 depending on whether 
ko > 0 or < O. The first term corresponds to the 
inner bremsstrahlung cut and the second to the 
virtual photon cut. The denominators are principal 
value parts. 

If we write oW) as a sum of opW) and op[( _k)2] 
in (AI), we find that these two terms give equal 
contributions to the amplitude when the k inte­
gration is performed. Thus (AI) is equivalent to 

opW) fp(p2 -;;- m
2
) + op(e) zop(l -;;- m2

) 
q - m p - m 

+ Op(p2 - m) ~p(q2 - m
2). (A2) 

k: 

We note that the same result may be obtained 
directly from a Feynman diagram [Fig. 13(c) less 
cut lines] by putting a given number (three in this 
case) of internal lines on the mass shell in all possible 
ways and applying Cutkosky's rule41 to these lines 
irrespective of whether they correspond to the 
unitarity cut or not. From this point of view, it is 
because the propagators for the lines k, P, q appear 
as a product 

111 
k2 + ie p2 _ m2 + if q2 _ m2 + if (A3) 

in the Feynman amplitude that (A2) is symmetric 
in these lines. 

d- --. ~: =. -g b- q-- c d- -- 0. c -__ -co -- fl" • +? '~*~+t g- - -e a- - d C -. -

FIG. 13. Cut diagrams representing the total probability 
of "/I"-e decay with radiative corrections. 

----
41 See reference 1. 
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Let us first see how the singularities of the ampli­
tude may arise. Consider the first term of (A2). 
Making use of conservation of four-momentum and 
the 0 functions in the numerator, its denominator 
can be written as 

1 1 1 
---Cq2;'-_-m-2 = 2pk = 2ko(Po - Ip I cos ()) , (A4) 

where ko is the photon energy and () is the angle 
between P and k. Thus the propagator (A4) has 
a pole at ko = 0, which leads to the infrared singu­
larity. For m ~ 0, Po - Ipi cos () is always different 
from zero for physical values of p, and no singularity 
arises from the second factor in the denominator 
of (A4). However, in the limit m = 0, Po - Ipi cos () 
may vanish and give another pole at () = 0. This 
is the origin of the In m term in the amplitude. 
Physically, this divergence is associated with the 
possibility that a particle of zero mass (momentum 
q) can emit a photon of arbitrary momentum k in 
the forward direction (insofar as ko < qo) without 
violating the energy-momentum conservation. Simi­
lar singularities are found in the remaining terms 
of (A2). 

Since it is well known how infrared divergences 
cancel each other,24.28 we shall concentrate our­
selves to the cancellation of In m terms in (A2). 
For simplicity, let us put m = 0 from the beginning. 
Then (A2) may be rewritten as 

0/2pk) I opW) Op(p2) - opW) op[(p + k)2] 

- OAp2) oA(p + k)2]}. (A5) 

Since ko, Po > 0, this may be transformed to 

_1 [o(po - P) o(leo - K) 
Spk PK 

o(ko - K) o(po + ko - Q) 
KQ 

o(Po - P) o~~ + ko - Q)], (A6) 

where P = Ipl, K = Ikl, and Q = Ip + kl. The 
divergence at m ° occurs when p and k are 
parallel, or Q = P + K. Thus, as () ----> 0, (A6) 
approaches 

o(Po - P) o(ko - K) 
Spk 

[ 
1 1 1] 

X PK - K(P + K) - PcP + K)' (A7) 

It is now easy to see that the three terms cancel each 
other for arbitrary P and K. Thus singUlarities of 
(A2) cancel out and become less singular. The for­
mula (A7) also shows how the infrared divergences 

® ~ w-----t.-<Xl 

.. .. --- -. - --- -i:11) -- -t=oo 
t·-<Xl--- .-- k f <Xl __ --t.-<Xl 

p q 

FIG. 14. Double cut diagram corresponding to the cut diagrams 
el, ez, ea of Fig. 13. 

at K = ° cancel each other.42 It is interesting to 
note that whereas cancellation of infrared diver­
gences occur between the first two terms only, all 
three terms must participate in the cancellation of 
m divergences. 

In the case of Fig. 13(b), we have to examine the 
absorptive part corresponding to the product 

1 1 
7/ - m 2 + ie "i/ - m 2 + ie 

X --2 _1 -. _,, __ 1_
2 
-., q = p + k. (AS) 

k+uq-m+u 

When the self-energy effect of the electron is sepa­
rated, we find again that complete cancellation of 
A and m divergences occur between the three cuts 
of Fig. 13(b). 

Let us now consider the three diagrams of Fig. 
13(e). All of them give infrared divergences, but 
they are found to cancel each other when put to­
gether. This situation may be understood by re­
garding the cut diagrams as a double cut diagram 
shown in Fig. 14. They are obtained by cutting 
pion lines of a vacuum-to-vacuum type diagram in 
various ways. The only part of these amplitudes 
which differ from each other may be written as43 

2 Op(q2 ~ ~2) opcr
2 

- p.2) + ?0/(q2 ~ I!:.:) Op(~2) 
k (q" - p.) (p - p. )(q - p.) 

+ 
op[( _le)2] opel - p.2). (A9) 

(q2 _ /)2 

As is easily seen, if op[( _le)2] is replaced by op(e) 
in the last term, (A9) may be regarded as the 
absorptive part of an amplitude that has the same 
structure as (AS). Thus, if one writes oP( _k)2] 
as opW) + IOA( _k)2] - op(k2)}, the first term 
will make (A9) free from A and m divergences. The 
second term may be written as 

(1/2 Ikl) o(leo + Ikl) - 0/2 Ikl) o(ko - Ik\). (A 10) 

These two terms tend to cancel each other in the 
limit k = 0. Thus, it does not give rise to an infrared 
divergence either. This argument can be extended 

42 See reference 24. 
'3 The formula (A9) is not well defined because of .the 

vanishing denominators. It is given here only for comparIson 
with (AS). 
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~ W: W-- ---to-co 

. ---- i:=cn - -- --- t;.(J) - - --- _·t=O) 

,·-co -~- k - -- --to-CO 
P 

FIG. 15. Additional double cut diagrams which are introduced 
to take account of the degeneracy of the initial state. 

to prove the cancellation of infrared divergences 
in the general case.28 

It should be emphasized, however, that this 
mechanism of cancellation will not work for the 
m singularity associated with J.l = 0 in (A9).44 This 
is because an m divergence arises from a domain 
where Ikl may take arbitrary value and thus the 
two terms of (AW) may not cancel each other any 
more. As is discussed in Sec. 11, however, when 
J.l = 0, the initial state will not be defined properly 
if only the presence of one meson is taken into 
account. We must instead consider a flux of mesons 
and photons that travel in the same direction with 
a given total energy momentum. In the lowest order 
perturbation theory, such a state will be described 
as a certain linear combination of a state with one 
meson and a state with one meson and one photon 
present. The contribution of the first state to the 
total cross section has been discussed above. The 
second state will give many other terms, some of 
which are shown by the diagrams of Fig. 15. Now 
it will not be difficult to see that not only A diver­
gences but also m divergences cancel each other 
among Figs. 14(e1), 15(f2), and 15(f3). Similarly 
for the set Figs. 14(e2), 14(e3), and 15(fl). Thus, 
all mass divergences in fact disappear in such a 
treatment. Incidentally, we also find that the 
diagram e1 of Fig. 14 is not really a natural counter­
part of diagrams e2 and e3 • It would look somewhat 
accidental that this did not destroy the cancellation 
of infrared divergences of Fig. 14. 

APPENDIXB. 
DERIVATION OF FORMULA (2.8) 

There is no particular rule how to parametrize 
a Feynman amplitude. Thus, several alternative 
methods of parametrization have been used in the 
past. Many more may be written down according 
to one's need. Of these, our formula (2.8) has a 
distinctive feature that it is perhaps the most 
economical expression and that it has a very close 

44 Since the decay probability vanishes when the pion 
mass vanishes, the following argument is actually not 
appropriate for the decay problem. We should rather regard 
it as a simplified treatment of m singularity arising from one 
of the incident particles of a collision process. 

correspondence with the Feynman diagram itself. 
But, of course, all these formulas are equivalent and 
we should be able to derive one from another by 
transformation of parameters. Instead of proving 
(2.8) directly, we shall therefore take one of the 
published formulas and show how it is transformed 
to our formula by a simple rearrangement of terms 
of Vex, z). 

If we follow Nakanishi's method,6 except that we 
parametrize in two successive steps as is done in 
Sec. 2, we are led to an integral of the form (2.8), 
where vex, z) is given by 

vex, z) = - E Zaq: 
a 

+ U-1(z) ~ U C(z) ( t ± zaqa r (B1) 

rather than (2.12). Here Ec is the sum over all 
possible (not necessarily independent) closed loops 
C, and EC is the sum over all chains belonging to 
given C. The function U c(z) is defined by 

where the summation is over all possible sets 
(ai, a2, ... , a,_I) such that ka" k a., ... , k a,_. 
are independent and none of the ai, a2, ... , ar-l 

coincide with any a belonging to C. U(z) and 
qa are defined by (2.10) and (2.7), respectively. 
Our problem is therefore to show that (B1) can be 
written as (2.12). 

For this purpose, let us note that it is always 
possible to give arbitrary values to r of the constant 
momenta q, (one from each of the independent 
closed loops CI , C2 , ••• , C,) because (2.3) contains 
r independent variable momenta k i whose origin 
may be shifted by an arbitrary amount. In the 
integral (2.8), Vex, z) is therefore invariant under 
any transformation of the form 

(B3) 

where i(C) runs over all internal lines of an arbitrary 
closed loop C, and qC is an arbitrary fixed four­
vector. Since Va(x) is already invariant under (B3), 
vex, z) must also be invariant, although this is not 
readily seen from (Bl). 

In order to rewrite (TIl) in an explicitly invariant 
form, note that the Lorentz-invariant quadratic form 

(B4) 

is also invariant under the transformation (B3) 
for any value of x, if any closed loop contains an 
even number of chains out of a, (:1, ••• , 0, and if 
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signs of q a, q~, .,. , q! are chosen properly. This 
is easily proved making use of the transformation 

(B5) 

derived from (B3), where a(C) is any chain belonging 
to the loop C. Obviously q~ or (q" ± qp)2 cannot be 
invariant under (B3). Indeed, the simplest invariants 
are of the form (qa ± qp ± q~)2, where a, {3, 'Yare 
chains that meet with each other at a three-vertex 
(part). For any chain diagram, the total number of 
these invariants is finite. 

Arbitrary invariants bilinear in qa, qp, ... may 
be expressed as linear combinations of invariants 
(B4). In particular, U(z)v(x, z) will be written as 

.2: A"p ... !(z)(qa ± qp ± ... ± q!)2, (B6) 
a.p ... ·.! 

where A ap",! is a homogeneous polynomial of order 
r + 1 in z and is independent of x. Comparing the 
coefficients of q!, etc., of (B1) and (B6), we find 
that A"p ... ! satisfy 

.2: A,,~ ... !(z) = -z,,[U(z)]z._o (B7) 
P.· ".! 

for any a. Thus A ,,~ ... ! must contain the product 
z"Zp ... z! as a factor.45 From this it follows that 
(B6) should not contain any term of the form 
(.2: q" + .2: qfl)2 if it already contains nonover­
lapping invariants (.2: qS and (.2: qp)2. To prove 
this, note that for each term of the polynomial 
z"U(z" = 0) it is possible to choose r independent 
closed loops in such a way that r of the z factors 
each belong to only one closed loop, whereas the 
last z belongs to more than one loop. In the above 
example, however, there are, for any choice of r 
closed loops, at least two factors of z, each of which 
belongs to more than one loop. This is impossible. 
Thus the summation in (B6) and (B7) must exclude 
invariants of this type. This permits us to solve 
Eq. (B7) uniquely, with the result 

U(z) while (B1) contains many other functions 
U c(z). It should be emphasized that this simplifica­
tion has been achieved easily because of our two-step 
parametrization of Feynman amplitudes. 

In Sec. 2, a set of chains a, {3, •.. , 0 is called a C set 
if the corresponding quantity (q" ± q~ ± ... ± q!)2 
is one of the terms of (2.12). It is interesting to point 
out that a C set has the property that the chain 
diagram is separated into exactly two parts if all 
chains of the C set are cut into two parts. This 
property can be used to find graphically all C sets 
of a given diagram. It follows from this that no C 
set can have more than r + 1 elements. Conversely, 
any set of chains with more than r elements must 
contain at least one C set as a subset. To see this, 
we have only to note that a diagram can be divided 
into at least two parts if r + 1 or more chains are 
cut. On the other hand, we can find a set with r 
chains which does not contain any C set as a subset. 
It will he useful to emphasize here that the formulas 
(2.S)-(2.12), together with this property of C sets, 
may be considered as a substitute for the usual 
Feynman-Dyson rules. In fact, in terms of these 
formulas, we can write down very easily the ampli­
tude for any given Feynman diagram once we 
obtain U(z), which is completely determined by the 
topological structure of the chain diagram. 

Finally we find an interesting identity 

U(z" = 0) = .2: (z~~) ... (za~) U(za = 0) 
fl." ',a aZfI aZa 

(B9) 

by substituting (BS) into (B7), where the summation 
is over all C sets I a, {3, ..• , 0) that contain a. At 
a mass singularity, each z belongs either to the set 
A or A. Let us assume in particular that a E A. 
Then we obtain 

U(z" = 0) = UA(z)U(z" = 0) + ... , (BlO) 

A"fI"'!(Z) = -ZaZp ... z,(ajazp) 

... (ajaz!)U(z" = 0). 

as is seen from (5.1). Thus, if one substitutes (B10) 
in (B9), divides both sides by U(Za = 0), and takes 

(BS) the limit Zt -+ 0, ~ E A, one finds that 

Equations (B6) and (BS) lead us immediately to 
the formula (2.12), which was what we wanted. It 
is very much simpler than (Bl) and its structure 
is transparent. In particular, it depends only on 

46 To prove this, we also need the relation L'Y ..... ! 
Aa~'Y' .. ,(z) = ZaZ~ X (polynomial in z) for fixed a, (3, which is 
obtained by comparing (Bl) and (B6) for a rO (3. 

(Bll) 

where the summation .2:' is over all elements 
{3, •.. ,0 of A such that la, (3, •.. ,0) is a C set of 
the original diagram. This formula is used in de­
riving (5.3). 
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The paper is concerned primarily with determining the mutual coherence function of the field pro­
duced by a plane quasi-monochromatic source in a region of variable refractive index. A scalar theory 
is used throughout. Section I presents a brief review of the conceptual background of coherence theory. 
Section II contains an outline of the mathematical formalism of coherence theory and shows that in a 
region of variable refractive index the mutual coherence function is propagated according to a pair of 
inhomogeneous scalar wave equations. In Sec. III, the pair of wave equations are solved using appro­
priate Green's functions to derive an expression for the mutual coherence function of a field produced 
by a plane quasi-monochromatic source. In Sec. IV the case of a statistically homogeneous medium is 
treated and an expression for the ensemble average of the mutual coherence function is obtained in 
terms of integrals of the two-point correlation function characterizing the medium. 

I. INTRODUCTION 

THE development of coherence theory has been 
strongly motivated by research in visual optics. 

The theory is concerned with the behavior of 
electromagnetic fields at frequencies so high that 
measurements consist of recording intensities 
averaged over periods of time, long compared to 
the times involved for individual fluctuations of 
the fields. The fields are assumed to have stationary 
time dependence, at least for intervals of the order 
of the averaging periods. 

In developing an advanced theory of optical 
behavior, the concepts of amplitude and phase 
which arc often useful in other branches of electro­
magnetic theory and in elementary optics are no 
longer of much help. The usefulness of these concepts 
breaks down not only because the high frequencies 
involved in optics make it impossible to measure 
the amplitude and phase of field components, but 
even more fundamentally because light as it is 
usually encountered (resulting from the super­
position of a large number of randomly timed 
statistically independent pulses) is not strictly 
monochromatic but consists of spectra of finite 
widths. Indeed, under the conditions stated it 
cannot be analyzed even by a Fourier decomposition 
into strictly monochromatic components since all 
that can be measured are the power spectra that 
allow statements to be made only about the amount 
of power carried by a narrow band of wavelengths. 

The principal difference between coherence theory 
and the more elementary theory is, that while the 
concepts of amplitUde and phase presuppose a 

* Work performed at Air Force Cambridge Research Labo­
ratories. 

t Technical Operations, Inc., formerly with Air Force 
Cambridge Research Laboratories. 

strictly monochromatic source of illumination and 
are not measurable quantities (at least in the optics 
realm), the basic quantities of coherence theory, 
namely, time-averaged intensities and functions 

_ which express the degree of correlation that exists 
between the vibrations at different points in the 
field, are measurable and do not presuppose an 
unrealistic a priori assumption as to the nature of 
the field. Furthermore, as limiting cases, coherence 
theory yields not only a strictly monochromatic 
theory, but also a theory of incoherent (addition of 
intensities) radiation and gives an accurate descrip­
tion of the region between these two limits-the 
region of partially coherent light. 

II. OUTLINE OF COHERENCE THEORY 

Following this brief statement of the conceptual 
background of coherence theory, we proceed to an 
outline of the mathematical formalism of the theory. 
Our principal concern in this section will be to 
introduce the fundamental entities of coherence 
theory-the mutual coherence function and the 
complex degree of coherence-and to derive the 
wave equations for the propagation of the mutual 
coherence function in an inhomogeneous medium. 
For the most part, theorems will be stated and the 
reader referred to the literature for proofs and 
further discussion. 

We start with a real scalar function of position 
and time V'(P, t) which in a source free, although 
not necessarily homogeneous, medium satisfies the 
scalar wave equation 

1 a2 V'(p, t) 
C2(P) ---;)[-2 -

where P is the position vector. (At times III the 

678 
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discussion, it will be convenient to indicate position 
by a subscript or to omit explicit spatial dependence.) 

The intensity of Vr(t) averaged over an interval 
of time of length 2T is given by the expression 

2~ LTT [V'(P, t)Y dt. 

Since in the applications we have in mind, T will 
be extremely large in terms of time units of the 
order of the actual fluctuations (for example, the 
mean period l/ii where ii is the mean frequency of 
the disturbance), it is convenient to let T ~ <Xl in 
expressions for the time-averaged intensity and for 
the correlation functions to be introduced below. 
We assume of course that the 

is finite. 
Kext, we associate with the real function Vr(P, t) 

a complex function Yep, t), the analytic signal. The 
advantages of choosing the analytic signal as a 
complex representation of the disturbance have 
already been discussed at length. I 

In terms of the analytic signal, the basic quantities 
of coherence theory, the mutual coherence function, 
and the complex degree of coherence may be 
precisely defined. The mutual coherence function 
rcPI, P2, r) == rlz(r) is defined to be the complex 
cross correlation between the analytic signal repre­
sentation of the real field at the two points PI and 
Pz ; that is, 

r 12(r) = ~~ 2~ L~ VI(T, t + r) V~(T, t) dt, 

where VieT, t) = Viet) for It I :::; T and is zero 
otherwise. The time average and limiting process is 
denoted by sharp brackets; thus 

r 12(r) = (VI(t + r) V~(t». 

By using the theorem that the cross correlation of 
the two real functions is equal to the cross correla­
tion of their Hilbert transforms in the same order,2 
it is readily shown that the time-averaged intensity 
I m at the point P", is given by ! r ",,,,(0), i.e., 

(m = 1,2). 

Also, by use of the theorem that the convolution 
of two analytic signals is itself an analytic signal, 
it can be shown2 that r I2 (r) is an analytic signal. 

I G. B. Parrent, Jr., J. Opt. Soc. Am. 49, 787 (1959). 
2 G. B. Parrent, Jr., "Contribution to the Theory of Par­

tial Coherence," AFCRC-TR-60-124. 

From the last result it follows3 that r 12 (r) possesses 
a Fourier spectrum which is zero for half the fre­
quency range. Thus 

r I2(r) = L~ f\2(v)e-2~;" dv 

where 

rI2(V) = L~ rI2(T)ehiH dT == 0, V < o. 

It should be noted here that in formulating the 
solution to actual problems, we usually obtain 
expressions of the form (VI(t l + t)V~(t2 + t). 
Under the change of variables t' = t + t2 , we obtain 
(VI(t l + T)VWI» where T = t2 - t1. The additional 
assumption of stationarity of Vet) (that is, that the 
time averages are independent of the choice of time 
origin, or equivalently that the time averages are 
a function of the difference in time only) is necessary 
to equate r I2 (T) with (VI(t l + t)V~(t2 + t». 

A normalized form of the mutual coherence 
function called the complex degree of coherence and 
denoted by 'Y12(T) is very useful in coherence theory; 
l' d T) is defined to be 

'Y12(T) = rI2(T)/[rll(O)r22(O)]1I2. 

By the use of the Schwartz inequality it can be 
shown that 0 :::; 1'Y12(r) I :::; 1. The limits characterize 
incoherent radiation and coherent radiation, respec­
tively. 

We shall now prove the important result that 
r I2 (T) is propagated according to a pair of wave 
equations. Specifically, we shall show that 

",2 rep P ) = _1_ a
2
r(PI , P 2 , T) 

Vm I, 2, T C2(P
m

) aT2 , 

(m=1,2), (1) 

Here the Laplacian \j ~ acts on the coordinates of 
the point P",(m = 1,2), and the spatial dependence 
of the velocity of propagation is indicated. 

To prove (1), we start from the assumption that 
V'(P, t) and hence the truncated function V'(P; T, t) 
satisfies the scalar wave equation 

\j2V'(P'T t) = __ 1_ a
2
V'(p; T, t). (2) 

" C2(P) at2 

Also, as defined above 

TV\P, t) = ;: L~ V'~~;!,/') dt'. (3) 

Operating on both sides of (3) with the Laplacian 
\j2, interchanging the order of operations and using 

3 M. Born and E. Wolf, Principles of Optics (Pergamon 
Press, New York, 1959), Chap. X. 
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the theorem4 that the Hilbert transform of the 
derivative of a function equals the derivative of the 
Hilbert transform of the function, we obtain 

",2 V'(P t) = _1_ a;' Vi(P, t) . (4) 
v T , C2(P) at2 

Multiplying (4) by i and adding to (2) we obtain 

",2V(P'T t) = __ 1_ a
2
V(p; T, t) . (5) 

v " C2(P) at2 

Thus, the analytic signal itself satisfies the wave 
equation. Now 

r(P1 , Pz, r) 

1 f'" = ~~ 2T _'" V(P1 ; T, t + r)V*(P2; T, t) dt. (6) 

Differentiating (6) with respect to P 1, interchanging 
the order of operations, and substituting (5) we 
obtain 

\7~rI2(r) = ~~ 2~ L: \7~[VI(T, t + r)]V~(T, t) dt 

= lim ~ f'" -~ a2
V 1(T, ; + r) V~(T t) dt 

T~'" 2T _<X> C (PI) ar ' 

1 a2 

= C2(PI) ar2 rI2(r). 

Similarly, 

2 () 1 aZ
r I2(r) 

\72r12 r = C2(P
2

) ar2 

and the proof is complete. 

III. PROPAGATION OF rdoe) FROM A PLANE 
SOURCE INTO AN INHOMOGENEOUS REGION 

We now come to the central problem of this 
paper, the determination of the mutual coherence 
function for a field produced by an extended poly­
chromatic source in a region of variable index of 
refraction. In the following discussion, 8 is an 
arbitrary surface containing an extended poly­
chromatic source with a known distribution of 
mutual coherence; PI and P 2 are points in the 
illuminated field V; and 8 1 and 8 2 are points on 
the surface 8. 

As shown above, the propagation of the mutual 
coherence function in a source free but inhomo­
geneous medium is governed by the pair of wave 
equations 

2 () 1 a2
rdr) 

\7 m r l2 r = C2(P
m

) ar2 , m = 1,2. (7) 

• Bateman Manuscript Project, Tables of Integral Trans­
form (McGraw-Hill Book Company, Inc., New York, 1953), 
VoL 2. 

We assume that r I2 (r) is known for all pairs of 
points 8 1 and 8 2 on the surface 8. 

Let r I2 (p) be the Fourier transform of r I2 (r). 
Then, as stated above, since r I2 (r) is an analytic 
signal, its Fourier spectrum contains positive 
frequencies only; that is, 

r I2 (r) = fo'" rI2(II)e-hiPT dv, (8) 

where 

(9) 

Substituting from (8) and (7) and interchanging 
the order of integration and differentiation, we 
obtain 

fo'" [\7~ + k!(II)]rI2(v)e-z .. iVT dv = 0, (m = 1,2). (10) 

Since (10) holds for all r we have 

[\7~ + e(PI, p)]r(PI, P2, v) = 0, (11 a) 

[\7; + e(P2 , v)]r(PI , P2 , II) = 0, (llb) 

Here k(P, v) = 211'vjC(P). Thus, each spectral com­
ponent of r I2 (r) satisfies the pair of Helmholtz 
equations (lla, llb). 

Now in Eq. (lla), P 2 is a fixed parameter as 
far as the operator is concerned. In particular, 
(lla) holds if P 2 is a fixed point 82 on a closed surface 
8. Equation (lla) then becomes 

(12) 

The boundary condition for (12) is the known values 
of r(SI, S2, v). Hence, the problem is to solve the 
pair of equations 

[\7~ + e(PI , v)]r(PI , S2, II) = 0, (13a) 

with reSI' S2, II) known on the boundary, and 

[\7; + e(P2 , p)]r(PI , Pz , p) = 0, (13b) 

with r(pI' S2, v) known on the boundary as a result 
of solving (13a). 

A formal solution to the Eq. (13a,b) can be 
easily obtained in terms of the Green's function 
S(P, Pi) which satisfies the equation 

[\7 2 + e(p)]S(P, Pi) = - Ii(P - Pi) (14) 

and which vanishes on the boundary 8. In the case 
that 8 is plane, the Green's function must be chosen 
not only to vanish on the boundary plane but also 
to satisfy the radiation condition at infinity. 

In exactly the same way we would proceed if k 
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were a constant we obtain 

x a~MPI' Sn a~MP2' S~) dS' dS' 
an; an~ I 2' 

(15) 

Primes in (15) and in following equations are used 
to indicate the variables of integration, and corre­
sponding subscripts and primes attached to the 
surface S also serve this purpose. Explicit depend­
ence on the frequency v has been omitted for con­
ciseness. It will be shown below that ~.h = m. 

An explicit form for S(P, P') can be obtained 
using an iterative procedure. We first rewrite (14) 
representing e(p, v) as the sum of a fixed mean value 
k2(v) and a variable part with zero mean, e(lI)e(P, II). 
Thus, 

(\7 2 + e)S(p, PI) 

= - o(P - P') - ee(P)S(P, P'). (16) 

[Physically e(P) can be said to be the variable part 
of the dielectric constant of the medium.] Now 
Eq. (16) can be taken formally to be an inhomo­
geneous constant coefficient Helmboltz equation 
with right-hand side as the source term. Accordingly, 
a solution to (16) can be obtained in terms of the 
Green's function G(P, P") which satisfies the con­
stant coefficient equation. 

(\72 + e)G(p, P") = - o(P - P") (17) 

and vanishes on the boundary surface. Recalling 
that G itself also vanishes on the surface, we obtain 

S(P, P') = G(P, P') 

+ le
2 Iv" e(P")S(P", PI)G(P, P") dV". (18) 

Equation (18) can now be used as the basis for 
an iterative development and we obtain 

S(P, PI) = G(P, P') 

+ k2 Iv" e(P")G(P", PI)G(P", P) dV" 

+ Ie' J("v,,, e(P")e(P"')G(P''', P") 

X G(P", P')G(P", P) dV'" dV" + ... (19) 

Substituting the iterative series (19) into (15) we 
obtain the following expression for the Fourier 
transform of the mutual coherence function: 

x If v , "V,'" e(Pi')e(Pi")GI(P;", Pi') 

X GI(Pi', PI) aaGt dVi" dVi' dSi dS~ 
n l 

+ le
4 If8"8" r(Si, SD 

X Ifv,,,v,,, e(Pi')e(P~')GI(Pi', P I)G2(P;', P 2) 

X aG! (P" S') aG~ (P" S') dV" dV" dS' dS' an; I, I an; 2, 2 2 I 2 I 

X ffv,,,v,,,, e(P~')e(P~")G2(P~", P~')G2(P~', P 2 ) 

X aaG~ dV~" dV;' dS{ dS~ + .... 
n2 

(20) 

The Green's function G(P, PI) has been determined 
in an earlier paper I for the important case in which 
S is a plane surface and we give the result here: 

"'iklP-P'j =IoikIPi-P'! 

G(P, P') = ip - P'I - ip; - P'I' (21) 

Here, Pi denotes the image of the point P in the 
plane S (see Fig. 1). The plus sign is taken where a 
subscript 1 appears in (20), and the minus sign is 
taken where a subscript 2 appears in (20) or vice 
versa. 

It should be noted here that an identical expres­
sion for r(P I , P 2 , II) can be obtained by a procedure 
which iterates for the transform of the mutual 
coherence function itself, rather than for the Green's 
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s 

v FIG. 1. Geometry for 
Green's Function. 

function for the Helmboltz equation with a variable 
coefficient. This procedure begins by putting the 
pair of differential equations (13a, 13b) in the form 
of a pair of equivalent integral equations by employ­
ing Green's functions. Thus, 

'(P S ) - f ·(S' S ) aG1(PI
, SD dS' r I, 2, P - - r 1, 2, P a ' 1 

8,' n1 

+ k2 Iv,. E(PDrePi, S2)G1(PI, Pi) dVi (22a) 

r(PI, P 2, p) = -f rePI, S~) aG2(:2; SD dS~ 
S::' n 2 

+ k2 Iv,. E(p~)r(PI' P~)G2(P2' P~) dV~. (22b) 

Here, the Green's function G(P, P') is identical 
with the Green's function of Eq. (17), and we have 
again employed the representation 

The integral equations (22a, 22b) are then used as 
the basis for an iterative procedure which starts 
with the surface term as a zeroth order approxima­
tion and by successive substitutions yields the same 
iterative series for r(p!) P z) as obtained above. 

The form of the iterative solution obtained [Eq. 
(20)J for the propagation of the mutual coherence 
function in a medium in which the refractive index 
varies is that of the uniform space solution 

if r(Si, SD aGI (PI; SD aG2(P2f S~) dSi dS~ 
< 8,'8,' anI anz 

modified by a series of correction terms which 
involve volume integrals of a quantity associated 
with the fluctuations of the refractive index. When 
the refractive index is constant, the correction terms 
become zero and the solution reduces to the uniform 
space solution. 

The iterative solution obtained is, of course, that 
for a single spectral component of rlZ(r). To obtain 
r I2 (r), the iterative solution r 1Z (r) must be sub­
stituted in Eq. (8) and the integration over P per­
formed. However, in the case of most practical 
interest, that of quasi-monochromatic fields, it is 

unnecessary to actually perform the integration. A 
quasi-monochromatic field is one for which the effec­
tive spectral range Llp is small compared to the mean 
frequency V; that is, Llp/v « L For this case, pro­
vided that the time difference r is small compared to 
the coherence time 1/ Llp, it is known1

•
3 that the 

mutual coherence function is of the form 

/rI « 1/ Llp, (23) 

where V is the mean frequency of r I2 (r). Substituting 
from (23) into (7), we obtain 

[\7~ + e(Pm , V)]r I2 (0) = 0, (m = 1,2), (24) 

where 
k(Pm , v) = 21TV/C(Pm ). 

Thus, under the quasi-monochromatic approxima­
tion of narrow spectral width and small path 
differences, we have shown that r I2 (0) satisfies the 
same pair of Helmholtz equations (11) as does 
r12(p) with p now fixed at the mean frequency v. 
The boundary condition becomes r(SI, S2, 0) and 
the iterative solution yields r 12(0) which when 
substituted in (23) gives us the quasi-monochromatic 
solution. (It should be noted that the varying 
propagation velocity implies that the time difference 
r may be different for two paths of the same geo­
metric length.) 

The Green's function formulation of the solution 
in Eq. (1il) leads directly to an important result 
which we state as a theorem. 

Theorem. The field produced by a quasi-mono­
chromatic coherent source extended over a surface 
in contact with a source-free time-invariant medium 
with arbitrary refractive index variation (in space) 
is itself coherent. 

Proof. The proof of this theorem starts with the 
result,!·5 that a quasi-monochromatic field (source) 
is coherent if, and only if, the mutual intensity 
r!2(0) can be represented as the product of a wave 
function U evaluated at PI with its complex con­
jugate U* evaluated at P 2 ; that is, 

r(P!, P 2 , 0) = U(P!) U*(P2). 

Now, in the quasi-monochromatic approximation we 
have from (15) and the discussion above that 

rep!) P 2 ) r) C":':::: exp (-21Tivr) 1'[ r(Si, SL 0) 
)8 2 'S1' 

(25) 

5 L. Mandel and E. Wolf, J. Opt. Soc. Am. 51, 815 (1961). 



                                                                                                                                    

MUTU AL COHERENCE FUNCTION IN AN INHOMOGENEOUS MEDIUM 683 

Assuming the source to be coherent allows us to 
write 

r(PI , P 2 , 0) = [Is. U(S') a~M~~; S') dS'] 

X [f U*(S') ag2(P2
; S') dS'] (26) 

s' an 
where the notation has been changed slightly to 
make the relationship between the bracketed 
quantities more apparent. The proof will be com­
plete if we can show that 

agd an' = agVan'. 

To prove this relationship we make use of the 
lemma2 that 

r*(PI , P2 , 0) = r(P2, PI, 0). (27) 

Substituting from (26) into (27) we have 

[f U*(S') ag~(PI; S') dS'] 
s' an 

X [f U(S') ag~(p2; S')] 
s' an 

= [f U(S') a~!rCP2; S') dS'] 
s' an 

X [f U*(S') ag2(P I
; S') dS']. (28) 

s' an 

Since each of the bracketed quantities is a function 
of one point only, we can equate the corresponding 
quantities obtaining 

f U*(S') aag~ (PI, S') dS' 
s' n 

= f U*(S') ~a ~ (PI, S') dS' 
s' n 

(29) 

and the desired relationship follows immediately. 

IV. STATISTICALLY INHOMOGENEOUS MEDIA 

We now turn our attention to the important case 
in which the refractive index is a stationary (spatially 
homogeneous) isotropic random process. We assume 
that the fluctuations f(P) satisfy the relation 

(f(PIMP2»av = (f(P/)avC(p). 

Here (f(PI) f(P2) )av denotes the average of f(PI) f(P2) 
taken over all pairs of points PI and P2 a fixed 
distance p apart; (f(p)2)av is the mean square devia­
tion (of the dielectric constant); and C(p) is a cor­
relation function which depends on the separation 
distance only. 

In practice, the fact that we are limited to a 
statistical knowledge of the medium implies that 
the most we can expect from our formulation of the 
propagation problem is a prediction of effects "on 
the average." For example, suppose that we have 
a plane quasi-monochromatic light source on a 
slab of ground glass and are interested in the dis­
tribution of the mutual coherence function on the 
far side of the slab. All that we can expect of our 
solution is that it yield a prediction of the coherence 
function averaged over a large number of different 
slabs of glass with the same statistical properties. 
In other words, we can predict the ensemble average 
distribution of the mutual coherence function but 
cannot accurately predict the distribution for a 
particular slab. 

Suppose then that a series of measurements are 
made to determine r(P I , P 2 , r) corresponding to a 
series of independent but statistically identical 
samples of a medium with refractive index fluctua­
tions. The source distribution r(SI' S2, r) and the 
geometrical relations are assumed to be identical 
for the entire series of measurements. We are 
interested in the average value of r(PI, P2, r). 
Let us idealize the average by letting the number 
of experiments N become very large and asking for 
the limit of the average as N ~ ex>. Thus let 
ri(PI, P2 • r) denote the jth measurement; then 
we seek to determine the ensemble average of 
r(PI, P 2, r), [r(PI, P2, r)] defined by 

. 1 N 

[r(PI , P2, r)] = ~~ N t1 r;(PI , P2, r). 

Referring to Eq. (20), recalling that only f varies 
from one measurement to another, and using the 
quasi-monochromatic approximation, we can write 

[r(PI , P2 , r)] ~ exp (-27r'iiir) 

X {if r(Sj, SL 0) aaG~ ~~; dSj dS~ 
s ~ , S 1 ' n1 uU'2 

+ k2 If r(s(, SL 0) aG; f [f(P(')] 
8 2 '8 1 ' dn2 V 1 " 

+ e If r(si, SL 0) aG~ f [f(P~')] 
8 2 '8 1 ' anI V." 

+ ... , 
where we have taken the ensemble average inside 
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the integrals. Since the samples of the medium 
associated with the series of experiments are assumed 
to be independent and statistically homogeneous, 
we can equate the ensemble average of ECP['), 
ECP~') E(P~'), etc., (formed with fixed points and 
different samples of the medium) with the averages 
of these same quantities obtained with a particular 
sample and allowing the points to vary (preserving 
distance relationships when these enter into con­
sideration). Hence, 

[ECP'~)] = (ECP».v = 0, (m = 1,2), 

[e(P'~)E(P:"")] = (E(P'~)eCP;:'».v 
= (E(P/).vG(P), (m = 1, 2), 

etc. 
Thus, to second-order terms we obtain the result 
that the ensemble average of the mutual coherence 
function Cin the quasi-monochromatic approxima­
tion) is given by 

[r(PI, P2, T)] ~ exp C-27riPT) 

X {if rcs~, SL 0) aG~ aG~ dS~ dSi 
• S.'S,' ani an2 

+ e(eCp)2)av ffs"s., reSt, SL 0) aG2(~~~ S~) 

X ffv."v.,,, GCIPi" - Pi'I)GICP[", Pi')GI(P[', PI) 

X aGI(~i'" sD dV[' dV{' dS[ dS; 
n l 

X ffv."v,,, G(IP[' - P~'I)GICPi', PI)G2(P~', P2) 

X aGICP[', SD aG2(p~', S~) dV" dV" dS' dS' 
an~ an~ I Z I 2 

X fJv,,,v,,,, CCIP~" - P~'I)Gz(P~", P~')GzCPf', Pz) 

X aG2(~~'" sD dVf" dVf' dS[ dSf. 
nz 

The statistics of the medium enter into this expres­
sion in the mean square of the refractive index 
fluctuations, (tCP)Z).v, and the two-point correlation 
function GCP) which must be integrated over the 
volume of the medium. 
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The methods of an earlier paper are used to obtain a domain of analyticity for the Schrodinger scat­
tering amplitude minus the first Born term. The connection between the scattering integral equation 
and the Schrodinger equation is also studied. 

1. INTRODUCTION 

I N the first paper of this series l it is shown that 
the scattering integral equation may be replaced 

by an integral equation with square integrable 
* Work supported in part by the National Science Foun­

dation. 
t Alfred P. Sloan Foundation Fellow. 
I A. Grossmann and T. T. Wu, J. Math. Phys. 2, 710 

(1961), referred to as (I). 

kernel, which can be studied by standard methods 
and yields information on the analyticity properties 
of the scattering amplitude. 

The results on analyticity, obtained in (I), refer 
to the total scattering amplitude. If the first Born 
term is subtracted from it, the remainder can be 
studied in a larger region. This is done in Sec. 2 of 
the present paper; the assumptions on the potential 
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the integrals. Since the samples of the medium 
associated with the series of experiments are assumed 
to be independent and statistically homogeneous, 
we can equate the ensemble average of ECP['), 
ECP~') E(P~'), etc., (formed with fixed points and 
different samples of the medium) with the averages 
of these same quantities obtained with a particular 
sample and allowing the points to vary (preserving 
distance relationships when these enter into con­
sideration). Hence, 

[ECP'~)] = (ECP».v = 0, (m = 1,2), 

[e(P'~)E(P:"")] = (E(P'~)eCP;:'».v 
= (E(P/).vG(P), (m = 1, 2), 

etc. 
Thus, to second-order terms we obtain the result 
that the ensemble average of the mutual coherence 
function Cin the quasi-monochromatic approxima­
tion) is given by 

[r(PI, P2, T)] ~ exp C-27riPT) 

X {if rcs~, SL 0) aG~ aG~ dS~ dSi 
• S.'S,' ani an2 

+ e(eCp)2)av ffs"s., reSt, SL 0) aG2(~~~ S~) 

X ffv."v.,,, GCIPi" - Pi'I)GICP[", Pi')GI(P[', PI) 

X aGI(~i'" sD dV[' dV{' dS[ dS; 
n l 

X ffv."v,,, G(IP[' - P~'I)GICPi', PI)G2(P~', P2) 

X aGICP[', SD aG2(p~', S~) dV" dV" dS' dS' 
an~ an~ I Z I 2 

X fJv,,,v,,,, CCIP~" - P~'I)Gz(P~", P~')GzCPf', Pz) 

X aG2(~~'" sD dVf" dVf' dS[ dSf. 
nz 

The statistics of the medium enter into this expres­
sion in the mean square of the refractive index 
fluctuations, (tCP)Z).v, and the two-point correlation 
function GCP) which must be integrated over the 
volume of the medium. 
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are there a little more restrictive than those of (I). 
The domain of analyticity is described by Theorem 
1. It includes the domain obtained by Hunziker2 

which, in turn, includes the domains previously 
obtained by many other authors. It should be 
noted, however, that the present results are not 
direct improvements of Hunziker's since the 
assumptions on the potential differ in some details 
from his. 

The Hilbert space introduced in (I) is not the 
space of state vectors. Theorems 2 and 4 are con­
cerned with the relationship between the two spaces, 
and Theorem 4 also clarifies the relationship between 
the scattering integral equation and the eigenvalue 
problem of the Hamiltonian. The Hamiltonian is 
defined by the method of Kat03 which fits precisely 
into the general scheme of quantum mechanics and 
does not require the introduction of boundary 
conditions. Theorem 4 reduces the study of bound 
states to the study of an integral equation with 
square integrable kernel and simple symmetry 
properties. A few immediate consequences are 
mentioned at the end of Sec. 4. They are not new 
results4 but are given here because the same methods 
of proof can also be applied to other problems which 
will be studied in a later paper. 

2. EXTENDED DOMAIN OF ANALYTICITY 

It will be assumed that Vex) (the potential 
multiplied by 2mli-2

) is measurable and that it 
satisfies the following conditions: 

(a) There exists a positive number a (possibly 
infinity) such that for every K < a, the integral 

I exp (K Ixl) I V(x) I dx (2.1) 

converges and that, for every K > a, the integral 
(2.1) diverges. 

(b) There exists a positive number a (possibly 
infinity) such that for every i1 < a, the integral 

II exp [i1(lxl + Iyl)] 

X I Vex) V(y) I Ix - yl-2 dx dy (2.2) 

converges and that, for every i1 > a, the integral 
(2.2) diverges. 

It will now be shown that the inequality 

2 W. Hunziker, Helv. Phys. Acta 34,593 (1961). We would 
like to thank him for preprints of his paper. Dr. Hunziker 
has informed us that he has also extended his domain of 
analyticity. 

3 T. Kato, Trans. Am. Math. Soc. 70, 195 (1951). This 
paper was pointed out to us by Professor V. Bargmann. 

• T. Ikebe, Arch. Rat. Mech. Analysis. 5, 1 (1960). 

(2.3) 

holds. Let i1 < a, and write i1 = K + e, where e is 
a given positive number. There exists a constant C 
such that 

exp (e(lxl + Iyl)} Ix - yl-2 ~ C 

for every x and every y. Thus 

II exp {(K + f)(lxl + Iyl)} Ix - yl-2 

X I Vex) V(y) I dx dy ~ c(I exp (K Ixl) Vex) dx r, 
which shows that the integral (2.1) is convergent 
for every K < a and proves (2.3). 

The amplitudef(q, p; k) is defined in (I) as 

f(q, p; k) = (b_q , [1 - A(k)r1ap) 

= (b_q , [1 + N(k)]ap) , (2.4) 
where 

A(x, y; k) - (47r) -IS(X) I Vex) V(y) I! 
X exp (ik Ix - yf) Ix - yl-l (2.5) 

sex) = sign V(x) , 

apex) = (27r) -3/2S(X) W(x) 11/2 exp (ip'X), (2.6) 

b't(x) = (27r)-3/2 IV(x)1 1/2 exp (iq·x), (2.7) 

and the asterisk denotes complex conjugation. The 
function f is holomorphic1 at every point of the 
region 

1m k > -!a, 

11m pi < !a, 
11m ql < !a, 

(2.8) 

(2.9) 

(2.10) 

with the exception of points at which an eigenvalue 
of the completely continuous operator A(k) is equal 
to one. 

If the first Born term is subtracted from f, the 
remainder is 

to (q, p; k) = (b_ q , N(k)ap) 

= II b~q(x)N(x, y; k)ap(Y) dx dy. (2.11) 

It will now be shown that the function t1), defined 
by the r.h.s. of (2.11) has analyticity properties 
which can be studied in a region larger than that 
given by (2.8), (2.9), and (2.10). 

Theorem 1. Assume that 

1m k > -!a, (2.12) 

that the number one is not an eigenvalue of A(k), and 
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that the complex vectors p, q satisfu 

11m pi < min [!(a + a), a + 1m kJ 

11m ql < min [Ha + a), a + 1m kJ. 

Then/J} is holomorphic at (q, p; k). 

Proof. For any real number A, define 

ap(x; A) = exp (-!A Ixl)ap(x), 

(2.13) 

(2.14) 

(2.15) 

bq(x; A) = exp (-!A Ixj)bq(x), (2.16) 

A(x, y; k; A) = exp aA(lxl + lyj))A(x, y; k), (2.17) 

and 

N(x, y; k; A) = exp aA(lxl + Iyl) )N(x, y; k). (2.18) 

Clearly 

II b!q(x)N(x, y; k)ap(y) dx dy 

= II b!q(x; A)N(x, y; k; A)ap(y; A) dx dy (2.19) 

for every A. The main part of the proof will con­
sist in showing that by the assumptions of the 
theorem, A can be chosen in such a way as to make 
square integrable every factor on the r.h.s. of (2.19). 
Once this is shown, the assertion of the theorem 
follows, as in (I), from general statements about 
inner products of Hilbert space elements which 
depend analytically on parameters. 

Lemma l.l. If 

and A(x, y; k; A) = A'(X, y; k) is square integrable 
for 

1m k > - !a' = HA - a). 

This proves Lemma 3. 
It follows immediately that, if (2.22) and (2.23) 

hold, the completely continuous operator A (k; A) 
depends holomorphically on k. 

Lemma 104. If (2.22), (2.23) are satisfied and 

A > 0, (2.24) 

then the kernel N(x, y; k; A), defined by (2.18) is 
square integrable over the whole x, y space. 

Proof. Define A1(x, y; k; A) by 

A1(x, y; k; A) = exp aA(lxl - lyl))A(x, y; k). 

This kernel is majorized by A(x, y; k; A) and is 
consequently square integrable over the x, y space. 
The opera tor 

N1(k; A) = -1 + [1 - A/(k; A)r l 

exists and is represented by a square integrable 
kernel. Otherwise the equation 

I exp (!A Ixl)A(x, y; k) exp (-!A Iyl)¢(y) dy = ¢(x) 

would have a nonzero solution ¢ E L (2). Then, how­
ever, if;(x) = exp (-!A Ixl)¢(x) would also be a 
nonzero element of L (2) and would satisfy 

I A(x, y; k)if;(y) dy = if;(x). 

A > 2 11m pi - a, 

then ap(A) E L (2) • 

(2.20) This, however, is impossible, since N(k) was assumed 
to exist. 

Lemma l.2. If The kernel N(x, y; k; A) satisfies 

A > 2 11m q I - a, 

then b_q(A) E L (2). 

(2.21) N(x, y; k; A) = A(x, y; k; A) 

The proofs are straightforward. 
Lemma l.3. If 

A < a, (2.22) 

and 

A < a + 2 1m k, (2.23) 

then A (x, y; k; A) is square integrable over the whole 
x, y space. 

Proof. Define V' by 

V'(X) = exp (A Ixj)V(x). 

Then V' satisfies the assumptions of (1), with 

Oi' = a - A > 0, 

+ I A1(x, z; k; A)N(z, y; k; A) dz. 

This equation has, in L (2), the unique solution 

N(k; A) = [1 - A1(k; A)r l A(k; A) 

= A(k; A) + NI(k; A)A(k; A). (2.25) 

Consequently N(k; A) is represented by a square 
integrable kernel, which proves Lemma 4. 

It can be seen from (2.25) that N(k; A) depends 
holomorphically on k. 

Finally, it is easy to see that (2.12), (2.13), and 
(2.14) are necessary and sufficient conditions for 
the existence of a number A which satisfies (2.20), 
(2.21), (2.22), (2.23), and (2.24) simultaneously. 
This completes the proof of Theorem 1. 
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A consequence of the above is 
Theorem 2. In the region (2.12), (2.13), (2.14) 

the amplitude f(1) can have a singularity only if k 
is such that the integral equation 

""(x) = -(4'n-f1 

X I exp (ik Ix - yl) Ix - yl-l V(y)",,(y) dy (2.26) 

has a solution ",,(x) for which 

I I",,(x) 12 I Vex) I dx exists and is positive. (2.27) 

Proof. It follows from Theorem 1 that a singu­
larity of III can occur only if there exists a cp such 
that 

A(k)cp = cp (cp E L(2), cp ~ 0). (2.28) 

It will now be shown that (2.28) can be satisfied 
if and only if it is possible to satisfy (2.26) and (2.27). 
Assume first that (2.28) holds. This means 

cp(x) = sex) I Vex) 11/2 

X I Go(x - y; k) I V(y) 11/2 cp(y) dy, (2.29) 

where 

Go(X; k) = _(411")-1 exp (ik Ixl) lxi-I. 

Define ""(x) by 

every K < a, and the integral (2.2) converges for every 
ii. < a. 

Proof. A function which is locally square 
integrable is summable over every sphere. This, 
together with (3.1), shows that (2.1) converges. In 
order to show the convergence of (2.2), write that 
integral as 

II I V'(x) V'(y) I Ix - yr
2 

dx dy 

with 
V'(x) = exp (K Ix[)V(x). 

Denote by I! dx the three-dimensional integral over 
the region a ~ Ixl ~ b. 

Lemma 3.1. The integral 

R fR i 0 V'(x) V'(y) Ix - yl-2 dx dy 

is finite for every R. 
Proof. Notice that whenever Ixl ~ R, 

i R 

Ix - yl-2 dy ~ 8R11" 

and 

iR 
I V'(x) 12 Ix - Y 1-2 dx dy = {I I V'(x) 12 

X (i R 

Ix - yl-2 dY) dx ~ 8R11" i R 

I V'(x) 12 dx. 

",,(x) = I Go(x - y) I V(y) 11/2 cp(y) dy. 
This means that V'(x) Ix - yl-l is square integrable 

(2.30) over the region 0 ~ Ixl ~ R, 0 ~ Iyl ~ R. Then, by 
the Schwartz inequality, 

Then, by (2.28), 

sex) I Vex) 11/2 ""(x) = cp(x) , (2.31) 

which shows that ""(x) satisfies (2.27). By sub­
stituting (2.31) into the r.h.s. of (2.30) one obtains 
(2.26). 

Assume now, conversely, that (2.26) and (2.27) 
are satisfied and define cp(x) by (2.31). Then (2.26), 
multiplied by sex) W(x)II/2, becomes (2.28). Finally, 
(2.27) shows that cp E L (2) and cp ~ O. This proves 
Theorem 2. 

3. OTHER ASSUMPTIONS ON POTENTIAL 

The class of potentials introduced in Sec. 2 is 
unnecessarily wide for some applications. A con­
venient subclass is described by 

Theorem 3. Assume that Vex) is locally square 
integrable and that 

Vex) = O[exp (-a Ix!)] ( Ix I --+ <Xl) (3.1) 

with a > O. Then the integral (2.1) converges for 

iR 
foR I V'(x) V'(y) I Ix - yl-2 dx dy 

= rR fR I V'(x21 -.f'(y) dx dy < <Xl, 
Jo 0 Ix - yl Ix - yl 

which proves the lemma. 
Now choose R so that, for Ixl ~ !R, 

IV(x) I ~ C exp (-f3 Ixl), 

where C is a constant and f3 = a - ii. > O. Then 

J: foR I V'(x) P(y) I Ix - yl-2 dx dy 

= IR
oo (iR/2 

+ £:J I V' (x) V'(y) I Ix - yl-2 dx dy 

~ ~~ [£00 exp (-f3 Ix!) dx ](iR

/

2 

[v(y) I dY) 

+ c2 foo rR 

exp [-f3(lxl + Iy!)] 
R J R/2 
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which is finite since Vex) is summable over every 
sphere. Finally 

IR
OO 

IR
oo 

IV'(x) V'(y) I Ix - yl-2 dx dy ~ C2 

X Loo 

IR
oo 

exp [-i3(lxl + Iyl)] Ix - yl-2 dx dy < 00. 

This completes the proof of Theorem 2. 
An immediate consequence of Theorem 1 and 

Theorem 3 is 
Corollary. Assume that Vex) is locally square 

integrable and that the asymptotic condition (3.1) 
is satisfied. Assume furthermore that 1m k > - to', 
and that the number one is not an eigenvalue of 
A(k). If the complex vectors p, q satisfy 

11m pi < min [0',0' + 1m k] 

11m q/ < min [0',0' + 1m k] 

then f(l) is holomorphic at (q, p; k). 

4. RELATION TO THE HAMILTONIAN 

In the present section it is assumed that Vex) is 
locally square integrable and that it satisfies the 
asymptotic condition (3.1). In order to define3 the 
Hamiltonian operator, it is convenient to consider, 
together with the Hilbert space L (2) of functions 
square integrable over the x space, the (isomorphic) 
space L (2) of Fourier-Plancherel transforms 

These are just the wave functions in momentum 
space. The relations (4.1) and its inverse establish 

. d b L(2) d L(2) a umtary correspon ence etween an . 
Denote bv 15 the set of functions X E L (2) which 

are such th~t IsI2x(s) also belongs to L<2). Let D be 
the corresponding subsetS of L (2). Every function 
X E 15 is summable and, consequently, every xED 
is bounded. 

Let flo be the operator in L'2>, with domain 15, 
defined by 

(4.2) 

The corresponding operator in L(2) will be denoted 
by Ho. Its domain is D. 

Denote by Dv the set of all functions X E L (2) 

which are such that V(x)x(x) also belongs to £,2). 
Define, in the obvious fashion, the operator V with 
domain Dv. Then Dv :J D, since V is square inte­
grable and every xED is bounded. 

• See reference 3. Kato's DO is our D. If Kato's assumptions 
are specialized so that (in his notation) s = 1, V' = 0, then 
it becomes obvious that our assumptions on V imply Kato's. 

The total Hamiltonian H is defined as 

H = Ho + V. (4.3) 

It can be shown3 that H is self-adjoint. 
In order to study the relationship between Hand 

the integral opera tor A (k) defined by (2.5), consider 
the set DK of all functions X E L (2) which are 
such that IV(x)11/2x(x) also belongs to L(2). Then 
DK :J D v, because if X E D v, then (x, V x) < 00, 

which means that lV(x)llx(x)12 is summable or that 
X E DK • Let Kl and K2 be operators with domain 
DK , defined by 

(K1x)(x) = sex) I Vex) 11/2 x(x) , 

(K2x)(x) = 1 Vex) 11/2 x(x) 

Clearly 

(X E D K ) (4.4) 

(x E DK). (4.5) 

(4.6) 

The equality sign between operators implies here, 
as throughout this paper, that the domains on 
both sides are equal. 

The main result of this section is 
Theorem 4. If 

1m k > 0 

then the eigenvalue equation 

Hif; = k2 if; 

(4.7) 

(4.8) 

has a solution if; E L (2) (if; ~ 0) if and only if the 
equation 

A(k)cp = cp (4.9) 

[where A(k) is the operator defined by the kernel (2.5)] 
has a solution cp E L (2), (cp ~ 0). These solutions are 
in a one-to-one correspondence, established by 

(4.10) 

The formal validity of the equivalence between 
(4.8) and (4.9), (4.10) is not difficult to see. The 
difficulties in the proof arise from the fact that it 
is not obvious that every solution to (4.9) [with (4.7)] 
is of the form (4.10) with if; E D, whereas (4.8) 
clearly implies that if; E D. 

In the propositions that follow, it is always 
assumed that 1m k > o. 

Lemma 4.1. The operator A(k) is the closure of 
the operator 

K1W - H O)-lK2. (4.11) 

Proof. Notice first that the operators A(k) and 
(4.11) concide for all cp E D K • Consequently, 

IIK1W - H O)-lK2CPII 

~ /I A (k) lI/1cpll (cp E DK). (4.12) 
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It follows that any Cauchy sequence of elements 
of DK is transformed by (4.11) into a Cauchy 
sequence whose limit is the image, by A(k), of the 
limit of the original sequence. This proves the 
proposition. Note that the operator A(k) is com­
pletely continuous and that its domain is the whole 
of L(2). 

Lemma 4.2. There exist an integer n ~ 1 such 
that the range of (A(k)f [the nth power of A(k)] 
is contained in DK • 

Proof. Denote by An(x, y; k) the kernel which 
corresponds to the operator (A (k)t. Then An(x, y; k) 
is of the form 

An(X, y; k) = sex) \ Vex) V(y) \ 1/2 Bn(x, y; k), 

where 

-(411")-1 \X - y\-I exp (ik \X - y\), 

Bn+l(x, y; k) = f B 1(x, z; k) V(z)Bn(z, y; k) dz. 

A direct evaluationS shows that B 4 (x, y; k) is 
bounded. Consequently, for any X E L (2) and 
cp = [A(k)]4X, there exist C1 and C such that 

\cp(x) \ S I V(x) \1/2 If B 4(x, y; k) !y(y) \1/2 x(y) dyl 

S CI \ Vex) \1/2 f \ V(y) \'/2 \x(y) I dy sCI Vex) \1/2, (4.13) 

since \V(y)\'/2X(y), being the product of two square 
integrable functions, is summable. Since Vex) is 
square integrable, the inequality (4.13) shows that 
cp E DJ(. 

Lemma 4.3. The condition H1/I k21/1, (1/1 ~ 0) 
is equivalent to 

(1/1 ~ 0). (4.14) 

Proof. Since e belongs to the resolvent set of 
H o, the operator (e - HO)-I maps, in a one-to-one 
fashion, the whole of L(2) onto D, which is the 
domain of both H 0 and H. The remaining part of 
the proof is straightforward. 

It remains to establish the equivalence between 
(4.14) and (4.9-10). 

• Reference 4, Lemma 2.2, Ikebe's A (n) is equal to our Bn +,. 
His assumptions in the derivation of that Lemma are: (a) 
square integrability of Vex) and (b) an asymptotic condition 
weaker than our Eq. (3.1). Consequently, his results apply. 

Lemma 4.4. If 1/1 satisfies (4.14), then cp = K,1/I is 
not zero and satisfies (4.9). 

Proof. Since D C DJ(, the operator K, can be 
applied to (4.14), yielding 

cp = K,(k 2 
- HO)-IK2CP 

which is (4.9) because of Lemma 4.1. If (4.14) is 
written as 

1/1 = (e - H o)-'K2K, 1/1, 

it is seen that K,1/I ~ 0, and the proposition is 
proved. 

Lemma 4.5. Assume that cp E L(2), cp ~ ° and 
that cp satisfies A (k)cp = cpo Then there exist a unique 
1/1 E D such that cp = K 11/I. Moreover, this 1/1 satisfies 
H1/I = k21/1. 

Proof. Notice that (A(k)tcp = cp for every 
integer n ~ 1. By Lemma 4.2, cp E D K • Define a 
1/1 E Dby 

1/1 = ce - H O)-IK2cfJ. (4.15) 

Then (4.9) becomes cp = K 11/1, and (4.15) becomes 
(4.14), so that Lemma 4.3 applies. 

This proves Theorem 4. 
The results of this section make it possible to 

relate properties of the Hamiltonian to properties 
of the completely continuous operator A (k) which, 
from a mathematical point of view, is a more 
elementary object. A few immediate results will be 
given here as an illustration. 

Corollary 4.1. The operator H can have at most 
a finite number of negative eigenvalues. 

Proof. It has been shown in (I) that the points 
k for which (4.9) holds are all contained in a half­
plane 1m k < /'0, and that they have no finite 
accumulation point. Because of Theorem 4 and 
fact that H is self-adjoint, these points are restricted, 
in the half-plane 1m k > 0, to the imaginary axis, 
and the assertion follows. 

Corollary 4.2. Every negative eigenstate of the 
Hamiltonian has finite degeneracy. 

This is an immediate consequence of Theorem 4 
and of the fact that eigenvalues of completely con­
tinuous operators have finite multiplicities. 
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. The kernel of the integral equation for the nonrelativistic scattering of a spinless particle by a poten­
tial - A V can easily be symmetrized, if V has a definite sign. Under suitable conditions for the potential 
the symmetrized kernel is square integrable and generates a completely continuous transformation of 
the space L 2 that has a pure point spectrum. 

The scattering kernel is a two-valued function of the energy s. For negative real values of 8 in the 
first Riemann sheet it is symmetric (Hermitian) and can be spectral decomposed in the usual way. 
Eigenvalues and eigenelements can be analytically continued, at least into the first 8 sheet and even 
into the finite second 8 sheet, if the potential decreases faster than any exponential function for r -> co. 

Eigenelements at two complex conjugate points 8, 8* form a complete biorthogonal system of L 2. The 
original and the resolvent kernel can be expressed in terms of that system and the eigenvalues, for 8 in 
the first and eventually finite second sheet. 

If the potential is indefinite, the scattering kernel is of polar type for negative real s and can be re­
presented in terms of polar eigenvalues and eigenelements. These may be continued in the same way as 
for a definite potential. 

The distribution of eigenvalues in the A plane is studied for arbitrary complex s and related to the 
occurrence of bound states and resonances. It is shown that Born expansions for resolvent quantities 
do converge, if and only if neither AV nor -AV create bound states. 

I. INTRODUCTION 

I N the modern version of scattering theory the 
scattering solutions of the Schrodinger equation 

are determined by the Lippmann-Schwinger integral 
equation, a formulation that originated from the 
interaction representation in time-dependent scat­
tering theory. In agreement with Heisenberg's point 
of view, all information that a quantum mechanical 
description can deliver must be contained in the 
resolvent kernel of that integral equation. Although 
it is well known that bound states appear as poles 
in the resolvent kernel, regarded as a function of 
energy, there has been considerable confusion about 
the physical meaning of the different kinds of poles 
that might occur. 

It seems, therefore, to be worthwhile to extract 
the information from the scattering integral equation 
in a more systematic manner. A natural starting 
point for such considerations is the remarkable 
property of the scattering kernel to be square inte­
grable for a wide class of potentials. Square-inte­
grable kernels generate completely continuous trans­
formations of the space L2 that are known to have 
a pure point spectrum. 

* Work performed partially under the auspices of the 
U.S. Atomic Energy Commission. 

t On leave of absence from Kernforschungszentrum 
Karlsruhe and Technische Hochschule Karlsruhe, Karlsruhe, 
Germany. 

We confine ourselves to the simple problem of 
the nonrelativistic scattering of a spinless particle 
by a local potential -AV. A may be considered as 
eigenvalue parameter of the scattering integral­
equation. To begin with, we assume in Sec. II, poten­
tials of definite sign that make the scattering kernel 
square integrable in a symmetrized form. Regarding 
the kernel as a two sheeted function of k2 = 8, it 
is shown to be completely continuous at least in the 
first sheet. It may be continued into the finite 
second sheet, if the potential decreases faster than 
any exponential function. 

In Sec. III the general spectral decomposition of 
the scattering kernel in the first 8 sheet is outlined. 
This is an easy task for negative real values of 8, 

where the kernel is symmetric. For complex values 
of 8, the kernel is not even normal, that is, per­
mutable with its adjoint. The usual spectral theory 
therefore breaks down. Nevertheless, a generalized 
spectral decomposition is obtained for 8 arbitrary 
in the first sheet by analytic continuation from the 
negative real axis. 

The method is generalized to potentials that 
change sign a finite number of times in Sec. IV. 
The kernel is now of "polar" type for negative real 
values of 8 and can be continued in a manner com­
pletely analogous to the symmetric kernel. In Sec. V 
the distribution of eigenvalues in the complex A 
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plane is investigated and related to the occurrence 
of bound states, resonances, and second sheet poles. 
Finally, we discuss in Sec. VI the convergence of 
Born expansions for resolvent quantities into powers 
of A. All known results about this subject can easily 
be derived from our point of view. Moreover, it is 
proved that under the assumed conditions for the 
potential the Born series converges for every value 
of s in the physical sheet, if and only if neither + A V 
nor - A V have a bound state. 

II. LINEAR TRANSFORMATIONS OF THE SPACE V 
GENERATED BY SCATTERING KERNELS 

During the course of this work we shall consider 
the nonrelativistic scattering of a spinless particle 
by a potential -AV(X). The "coupling constant" 
A may, in general, be complex, but Vex) shall be a 
real-valued function. Further conditions to be met 
by the potential will be specified according to the 
requirements of the analysis. The Schrodinger equa­

we shall be able to generalize our results to a finite 
number of sign changes of Vex). This can be done, 
following Hilbert in his theory of polar integral 
equations1 (Chap. XV) that are of type (2.3). The 
method is pointed out in more detail in Sec. IV. 

The kernel in (2.3) can then be symmetrized by 
multiplication with 1V11/2: 
1V1 1

/2 1/;~:) = 1V11I2 <PI< 

+ A J dT(X')K(:)(x, x' I k) I V1 1
/

2 1/;t) (2.5) 

with 
==ik!x-x'i 

K(:\x,x' Ik) = lV(x) 11/2 e , 
411" Ix - x I I Vex') 11/2. (2.6) 

The kernels K (:) are symmetric, but non-Hermitian 
for k ~ O. 

We now restrict ourselves to the class of potentials 
that make the kernels (2.6) square integrable, 
that is, 

tion then reads 

(H - E)1/; = 0, (2.1) IIK(:)W = J dT(X) J dT x') lK(=)(x, x' I k) 12 < co. 

where in dimensionless units (n = 2m = l)H = 
H 0 - A V = - /:::,. - A V, and E = k2 (k = wave 
number). Out- and ingoing scattering solutions of 
(2.1) are determined by the Lippmann-Schwinger 
equations: 

1/;~*) = <PI< - A[l/(E - Ho ± if)] V 1/;~=). (2.2) 

These may be written as integral equations in x 
space: 

1/;t)(x) = !pj,(x) - A J dT(X') 

X/x I 1 I x')V(X')1/;(=)(X') \ E - Ho ± if k, 
(2.3) 

where 

obiklx-x'i 

4 e I 'I = -G(=\x, x' 1 k) 
11" x-x 

is the negative Green's function of (/:::,. + Jc2). If a 
plane wave is chosen for <PI«x), the solution of (2.3) 
satisfies (2.1) for fixed energy E = e. Square SUffi­

mabIe wave packets may then be constructed by 
superposition. Actually, the fact that 10k may be a 
plane wave has very little influence on our considera­
tions. 

We shall assume, for the time being, that V (x) 2:: O. 
Then the potential is attractive for A > O. However, 

(2.7) 

The space of these functions is usually denoted 
by L2.2 If (2.7) is fulfilled for real values of k, then, 
of course, it is also true for all values of k in the 
upper half k plane 1m Jc 2:: O. Introducing s = k2 

as a parameter we then have: 

II K(s)ll < co (2.8) 

in the s-plane cut from 0 to co. K(s) is a two sheeted 
function of s. The upper half k plane is mapped 
onto the first sheet by k = (S)I/\ the lower half 
plane onto the second. The kernels K(*) are the 
boundary values of K(s) at the real axis in the first 
sheet, usually called the "physical" sheet: 

K(=) = lim K(s ± if). (2.9) 

The condition (2.7) is equivalent to 

This integral exists for potentials Vex) that 
(a) vanish faster than (/xi)-2 for Ixi ~ co; 

(2.10) 

(b) have only a finite number of singulari- (A) 
ties of type (lxl - Ix'i)-a with a < 2. 

If the potential is spherically symmetric and has a 
singularity only at the origin, conditions (a) and (b) 

1 D. Hilbert, GrundZiige einer allgemeinen Theorie der 
linearen Integralgleichungen, (Leipzig, 1912). 

2 F. Riesz, and B. Sz.-N agy, Functional Analysis, (Frederick 
Ungar Publishing Company, New York, 1955). 
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guarantee that: symmetric potentials 

LO r I VCr) I dr < 00. (2.11) (2.15) 

Hence, for potentials of class (A), K(s) always Conditions (A) plus (B) also guarantee the existence 
belongs to L2. Furthermore, the integrals of the scattering amplitude T kk': 

J dT(X') IK(x, x' I s) 12 = J dT(X') IK(x', x I s) 12 

exist, except for a finite number of points, and are 
integrable functions. 

Now, if f is an arbitrary element of the space 
L2(X, V) that is2

• 

(2.12) 

then Kf belongs also to L2, because: 

IIKfl1 ::; IIKII Ilfll· (2.13) 

Thus, the kernel K(s) generates a family of linear 
transformations of the space L2 depending on the 
complex parameter s; 

f = g + AK(s)f, (2.14) 

where A is to be considered fixed. The adjoint trans­
formation is generated by the complex conjugate 
K*(s). K(s) has the following properties: 

(a) It is completely continuous on the first sheet 
(see reference 2, chap. VI for a definition of complete 
continuity). In particular, it is a completely con­
tinuous symmetric transformation on the negative 
real axis - 00 < s ::; O. 

(b) The properties on the second sheet depend 
on the potential. If the potential decreases as 
exp (-2ar), (a > 0) for r -+ 00, K(s) is com­
pletely continuous in a region corresponding to the 
strip 0 ~ 1m k > - a; if the potential decreases 
faster than every exponential function, K(s) is com­
pletely continuous in the finite second sheet, that 
is, except the point 00. 

Hence, we can apply the powerful theory of com­
pletely continuous transformations to the scattering 
kernel at least on the physical sheet. 

The scattering solutions are obtained by applica­
tion of the resolvent transformation of (2.5) on the 
element IV11/2 ~k' if the latter belongs to L2, that is, 

(B) 

for a plane wave ~k' This means that for spherically 

ITkk,1 = I(~k' Vo/~;)I::; 111V11I2 ~11111V11/2 o/~;)II· 
(2.16) 

III. SPECTRUM OF K(s) IN THE PHYSICAL SHEET 

It is a well-known property of a completely contin­
uous transformation K that its resolvent (1 - AK)-l 
is a meromorphic function of the complex parameter 
A, that is to say, its singular values An (the "eigen­
values") form either a finite sequence that may 
be void, or an infinite sequence with accumulation 
point 00 (see e.g., reference 2, chap. IV.). If the 
transformation is also Hermitian, the Hilbert­
Schmidt theory gives the usual spectral decomposi­
tion. 

Let us, therefore, assume that s is some negative 
real value s = -ff < O. Because the kernel (2.6) 
is not of finite rank, we have an infinite sequence of 
positive eigenvalues An > 0 (the kernel is positive 
definite) with An -+ 00 for n -+ 00, each of finite 
multiplicity. The eigenvalue An determines the neces­
sary coupling strength for the formation of a bound 
state with energy E = - ff < 0 by the attractive 
potential -An V(V ~ 0). The degeneracy of such 
a bound state is always finite. The corresponding 
eigenelements satisfy 

cf>n(-ff) = An(-ff)K(-ff)cf>n(-ff) , (3.1) 

where we have displayed only the dependence of 
all quantities on s. The kernel K( -ff) can be ex­
panded into the series 

K(-ff) = L:cf>n(-ff)@cf>n(-ff) (3.2) 
n An( -ff) 

convergent in the mean. The cf>n are orthogonal and 
belong to L 2 • So we may assume them to be ortho­
normal: (cf>n, cf>m) = onm. Introducing 

cf>n = IVIT/2 Un , (Un, VUm ) = Onm, (3.3) 

it follows that Un E L~( -ff < Or) and the series for 
the Green's kernel (2.4) 

G( -a) = L: un ( -a) @un(-u) 
n An( -u) 

(3.4) 

also converges in the mean. This is due to the 
2. The space L2(X, V) (in the following called L') consists singular character of G for x = x'. Otherwise (3.4) 

of the functions square integrable over the region where 
V > u. would converge uniformly and absolutely. The real 
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functions Un obey the Schrodinger equations 

b,un - aUn + An VUn = 0, (3.5) 

and are bound-state wave functions for E = -a 

at coupling An. 
The series for the iterated kernels, 

l = 2,3 . ", (3.6) 

converge uniformly and absolutely according to 
Mercer's theorem, the first converges at all but the 
finite number of points where V is singular, the 
second converges everywhere. Hence, the same is 
true for the resolvent kernels 

Kx( -a) = K( -a) 

+ ," cf>n(-a)@cf>n(-a) (37) 
1\ 7' An( -a)(An(-a) - A) , . 

" un(-a) @un(-a) 
Gx(-a) = G(-a) + A 7' An(-a)(An(-a) - A)' 

where 

[1 - AK( -a)fl = 1 + AKx( -a); 

Kx( -a) = IVIl/2 Gx( -a) IV11/2. (3.8) 

If h is an arbitrary element of L2, then Kh and 
K-xh can be expanded into the series 

Kh = "A. (_ ) (cf>n(-a) , h) . 
"7' '/'n a An( - a) , 

K h = '"' A. (_ ) (cf>n(-a) , h) 
x "7' '/'n a An( -a) - A ' 

(3.9) 

convergent absolutely and uniformly at all but the 
singular points of V, and, of course, A ~ An for the 
second. Because elements of form Kh are dense in 
L2, the system [cf>,,( -a)] is complete. Hence, in L2, 

(3.10) 

Everything that has been said is valid for an 
arbitrary value of -a < O. Moreover, eigenvalues 
and eigenfunctions cf>n are continuous functions of a, 
as follows from the structure of the kernel (2.6). 
The eigenvalues An(-a) increase monotonically to 
00 for a ~ 00. The limit a ~ 0 exists, because K(O) 
still belongs to L2, and gives absolute minimum 
values for An on the negative real axis. Hence, the 
minimum value of all An in 0 ;::: s > - 00 is Al (0). 

x, (- u - i <) 

~ (- u + iE) 

FIG. 1. Analytic continuation of eigenvalues from the negative 
8 axis 8 = - rF ::; O. 

N ext we proceed from some point on the negative 
real axis s = -a < 0 to points s = -a ± i~ (~ > 0) 
in the upper and lower half 8 plane, respectively 
(see Fig. 1). In doing so, we must be very careful, 
because the kernel is no longer Hermitian. It is not 
even normal, that is, permutable with its adjoint. 
So the system of eigenelements can no longer be 
orthonormal. As is well known, the normal trans­
formations are the most general ones that can be 
spectral decomposed. However, the kernel K(s) has 
the special property 

KKt = (KtK) * , (3.11) 

which might be called "complex normality". In our 
case, it allows a slight generalization of a spectral 
decomposition that can be obtained by analytic 
continuation from the negative real axis. 

It is clear that, if cf>n is an eigenelement of K with 
eigenvalue An, then cf>~ is an eigenelement of K* 
with eigenvalue A~, because K and K* are sym­
metric: 

(3.12) 

If cf>n and cf>"! are eigenelements for An and A"!, where 
An ~ Am, they are orthogonal. In fact, 

and 

(cf>n, cf>!) = An(Kcf>n, cf>!), 

(cf>n, cf>!) = Am(cf>n, K*cf>"!) 

= Am(Kcf>n, cf>!). 

(3.13) 

[We write (f, g) = f drfg*.] Furthermore, it is 
evident that 

An( - a - i~) = A ~( - a + i~), 
cf>n( -a - i~) = cf>~( -a + if). 

(3.14) 

We may then construct a biorthonormal system in 
L2 with 

(3.15) 
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It coincides on the negative real axis with the 
orthonormal system rf>n( -0"). To be sure, (3.15) 
means 

and is not an orthonormal system in complex L 2 

space. Hence, the analytic continuation of the 
orthonormal system in s = - 0" is a biorthonormal 
system in s = -0" ± iE. The reason is that the 
analytic continuation of IIrf>n( -O")W is, of course, not 
IIrf>n( -0" ± iEW = (rf>n( -0" ± iE), rf>n( -0" 1= iE», but 
(rf>n( -0" ± iE), rf>~( -0" ± iE». Writingrf>n( -0" ± iE) = 

Un ± ivn, we have from (rf>n, rf>~) = 1: (un' Vn) = 0 
and IlunW - IlvnW = 1. Hence, 

(rf>n, rf>n) = I/unW + I/vnW = 1 + 2 I/v"W ~ 1. (3.17) 

The equality sign holds only on the negative real 
s axis, where Ilvnll = O. 

So we may continue the expansion (3.2) into the 
complex s plane. The point is that we have to re­
place the tensorial product in complex L2 space 
rf> .. @ rf>n by a simpler one that does not involve the 
complex conjugate. We shall denote this by a dot 
rf>n 'rf>n: 

The series (3.2), of course, still converges in the 
same sense as before on the negative real axis. So 
we have 

K( -0" + iE) = L: rf>,,( -0" + iE) 'rf>,,( -:0" + iE) 
n A,,( -0" + ~E) 

K( -0" - iE) = K*( -0" + iE) 

__ "rf>~( -0" + iE) 'rf>~( -0" + iE) . 

converges, because of the Riesz-Fischer theorem. 
Then Ro must also be completely continuous and 
analytic in the cut s plane. But on the negative 
real saxis Ro must vanish. Hence, it is zero every­
where in the s plane and we have 

(3.22) 

The series (3.19) has in fact the property of being 
complex normal [see (3.11)]. We have 

KK* - "rf>"'rf>; (,/., ,/.,) - t: AnA! 'fin, 'Pm 

= [~ ~~~~m (rf>m, rf>n) ]* = (K*K)*. (3.23) 

Furthermore, we have in L2, 

and 

s = -0" ± iE. (3.24) 

As is well known, (3.24) holds in general for non­
normal L2 kernels3 (chap. VII!.). The equality sign 
holds, if and only if, K is normal, in our case on the 
negative real saxis. 

Because 

IIK( -0" ± iE)I/ = IIK( -0")11, 
it follows from (3.24) and (3.10) that 

L: 1/ lAne - 0" ± iE) 12 < L: I/A!( - 0"). 
n n 

That, of course, does not mean 

1/ lAne - 0" ± iE) 12 < I/A!( - 0"), all n. 

(3.25) 

(3.26) 

(3.27) 
.L...J (3.19) 

n A~( -0" + iE) However, (3.27) is true for the lowest eigenvalue 

This result can also be well understood in terms AI' In fact: 
of the usual theory of integral equations or linear 
transformations of L 2 • One may then argue as follows: 
To each eigenvalue of a completely continuous 
kernel there exists a canonical decomposition K = 
R + S, where S is of finite rank and RS = SR (see 
reference 2, chap. IV.). In our case we have: 

s = -(1' + iE, (3.20) 

because (<Pm rf>~) ~ 0; that is, the eigenelements of 
K and its adjoint K+ = K* are not orthogonal. 
Summing .all contributions we obtain 

(3.21) 

where Ro is orthogonal on all S". The series certainly 

IAI( -(1' ± iE) I 

= I(K(-O" ± iE)rf>I(-O" ± ie),rf>I(-O" ± iE»I 

5 (K( - 0") Irf>II, /rf>II) < ~~( !;~ , (3.28) 

because l/AI( -0") is the maximum of the quadratic 
form (K( -O")cp, cp) under the subsidiary condition 
(cp, cp) = 1, and (rf>l' rf>l) > 1 from (3.17). The 
maximum is taken only for cp = rf>I ( - 0"). A similar 
conclusion cannot be drawn for the higher eigen­
values n 2: 2, because I/An( -O")(n ~ 2) is the 

3 F. Smithies, Integral Equaticms, (Cambridge University 
Press, New York, 1958). 
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minimum of the maxima that (K( -u)<p, <p) can 
have under the subsidiary conditions (<p, <p) = 1 
and (<p, VI) = 0 (l = 1 ... n - 1) for arbitrary VI' 

We have indicated in Fig. 1 that the lowest eigen­
value A1 must increase in magnitude, if S goes off 
the negative real axis, but others may decrease. 

In particular, we have for the boundary values 
on the cut Al(S ± if) (0 < 8 < co): 

(CPI, CPI)/IA1(s ± if) I = I(K(s ± if)cp1' CPI)I 

::; (K(O) Icp, I, ICP11) < (cp" CPI) lA, (0) , (3.28') 

and in an analogous manner: 

(3.29) 

These results will play an important role, when we 
discuss the convergence of the Born series in Sec. VI. 

Next we want· to determine the sign of 1m 
An( -u ± if). If S is an arbitrary point in the cut 
S plane, the functions Un(S) , u~(s) = un(s*) [(3.3)] 
are £~ and obey the SchrOdinger equations 

b..un + SUn + An VUn = 0, (3.30) 
b..U':', + S*U':', + A':',VU~ = O. 

Hence 

1m s· (un, Un) = - 1m An(Un, Vun). (3.31) 

Of course, (3.31) does not hold for the boundary 
values on the cut. Observing the asymptotic be­
havior of un(s ± if) (0 < S < co), 

.... irv's 

un(s ± if) --7 e __ fn 
r 

(3.32) 

(fn = scattering amplitude), we obtain the familar 
result: 

(8) 1/2 J d" Ifn[2 = I "( V) ,. - m "n Un, Un 

(3.33) 

1m An has, therefore, always the opposite sign as 
1m S (Fig. 1), and vanishes only for - co < S ::; O. 

It is clear from what has been said that the series 
(3.6), (3.7), and (3.9) still converge in S = -u ± ie 
in the same sense as in 8 = -u. That means, in 
particular, our biorthonormal system {CPn, cp~l is 
complete. In fact, let h be an element of L2. Then 
K(s)h can be expanded in S = -u, according to 
(3.9). This may be continued to S = -u ± if to 
give a representation in terms of the elements {CPnl 
or {cp~}. Because elements of form K ( - u)h are 
dense in £2, the biorthogonal system {cpn! cP':',} is 
complete. 

For an arbitrary biorthonormal system of U 
{CPn, 1/Inl the completeness condition reads, 

/lgW = L anb~ = L a':',bn , (3.34) 
n n 

where 

In our case we have 1/In = cP':',. But this means neither 
bn = a~ nor bn = an. For instance, we have in V 
(3.24): 

IIKW = L: (CPn, cp:)2 
n.m AnAm 

a = (K cP .cp ) = L (CPI, CP,,)(CPI, CPm) 
urn ,n m l Al 

(3.35) 

(Scalar products are taken in L2, where CPn 'CPm, 
cP':', 'cP!, is a complete biorthonormal system.) 

We may then analytically continue the eigen­
values An(S) and eigenelements CPn(S) into the entire 
S plane cut from 0 to co along the positive real 
axis, where k = (S)'/2 changes its sign. The system 
{cp,,(s), cp~(s) I is always complete in £2 and the 
expansions (3.2), (3.4), (3.7), and (3.9) are valid in 
the entire cut S plane. In particUlar, we have the 
representations for the resolvent kernel K~(s) and 
the complete Green's function G~(s): 

K~(s) = K(s) + A L CPn(S) 'CPn(S) 
n An(S)(An(S) - A) 

(3.36) 

G~(S) = G(s) + A L: un(s) ·un(s) . 
n An(S)(An(S) - A) 

These expressions are equivalent to the Fredholm 
series that have been used by several authors,4.5 
but are much easier to handle than the unwieldy 
determinants. The Fredholm theory can, in fact, 
be applied to every L2 kernel. 6 We have shown that 
the "complex normal" kernel K(s) allows a slight 
generalization of a spectral decomposition. It is 
determined by its eigenvalues and eigenelements 
that form a complete biorthonormal system with 
the eigenelements of the adjoint kernel K*. It would 
be an interesting mathematical question, whether 
this holds in general for the class of transformations, 
characterized by (3.11). 

Next, we want to generalize the results of this 
section to the case of a sign changing potential. 

4 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951). 
• N. N. Khuri, Phys. Rev. 107, 1148 (1957). 
5 F. Smithies, Duke Math. J. 8, 107 (1941). 
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}._. (- u + io) 

,_, (- u) ',(-.) ',(-.) 

\ 
'-,(-u-i.) ,_,(-._i.) 

FIG. 2. Analytic continuation of polar eigenvalues from the 
negative real 8 axis S = -rr :::; O. 

IV. POLAR KERNELS 

If the potential changes its sign a finite number 
of times, we cannot simply symmetrize the scatter­
ing kernel by multiplication with 1V/ 1/2 as has been 
done in Sec. II. However, after multiplication we 
arrive at a kernel, as simple on the negative real 
axis 8 ~ ° as the Hilbert-Schmidt one. It has been 
studied by Hilbert (reference 1, chap. XV) and 
Garbe,7 and is' called "polar." Instead of (2.6) we get 

K'(x, x' / k) 
iklx-x'i 

= /V(X)/1/2 47r
e/x _ x'/ W(X,)/1/2 vex') = Kv, (4.1) 

where vex') = sgn Vex') is the sign of V at a point 
x' and K is our previous kernel (2.6). On the negative 
real 8 axis in the physical sheet (4.1) differs from a 
Hilbert-Schmidt kernel by the sign function vex'). 
It is this property that is called "polarity." 

If the polar kernel is of the type sign function 
times a definite closed Hermitian kernel as is (4.1) 
in 8 ~ 0, then, according to Hilbert, there is an 
infinite number of positive eigenvalues An and 
negative eigenvalues A-n (n = 1, 2, ... ) with ac­
cumulation at OJ. The corresponding eigenelements 
¢ .. = /V/ 1/2 

Un form a "polar" system that is 

(4.2) 

where sgn An means the sign of the eigenvalue An' 
It can easily be seen that the spectrum of a polar 
kernel is of this kind. (4.1) may be considered as 
the sum of two kernels, the first being defined only 
in those domains, where V > 0, the second where 
V < 0. Hence, the first is positive definite, the 
second negative definite and the spectrum of the 
sum must be of the type asserted. 

Everything that has been said in Sec. III about 
the properties of K( -0-)( -u < 0) is true also for 
polar kernels, if we understand all expansions in 
terms of polar eigenelements. We have, for instance, 

G( - ) = '" un ( -u) ® un ( -u) "\. 
U £.... "\ sgn An, 

=n I\n ----
7 E. Garbe, Math. Ann., 76, 527 (1915). 

K~( -u) = K( -IT) 

'" ¢n( -u) ® ¢n( -IT) 
+ A ~ An( -u)(An( -u) _ A) sgn An' (4.3) 

(Note that the kernels do not contain the sign func­
tion.) If h E L2, then Kvh can be expanded into 
the uniformly and absolutely convergent series' 

(4.4) 
=n 

Elements of form Kvh are dense in L2, and we have 
the completeness condition 

It is now obvious how the results of Sec. III can 
be transferred to the polar case. Analytic continua­
tion off the negative real axis works in the same way. 
We now obtain a "bipolar" system in L2. 

The sign of 1m An can be read off from (3.31), 
(3.32) recalling 

(4.6) 

The latter quantity is a continuous function of 8 

and cannot vanish in the cut s plane. Hence, 

sgn (¢n(s) , v¢n(s» 

= sgn (¢n(O) , v¢n(O» = sgn A,,(O). (4.7) 

It follows from (3.31), (3.32) that positive and 
negative eigenvalues of a polar kernel are moved 
in opposite directions, if s becomes complex (see 
Fig. 2). 

In place of (3.10) we have: 

IIK( -u)vW = L: l/A!( -u) 

~ IIK( -IT)W = L: I/[A!( -u)Y (4.8) 
n 

The equality sign holds only for definite v. 
Bounds for the eigenvalues in the complex A 

plane can be derived in a similar fashion as in Sec. 
III. Consider AI(S ± if) (0 < S < OJ). We have 

(¢I,v¢j)I/AI(S ± i€)/ = /(K(s ± i€)V¢I,V¢I)/ 

~ (K(O) I¢l/' !¢ll) < (¢l' v¢I)/AI(O) , (4.9) 

because l/AI (0) is the maximum of (K (0)1{), I{) 

under (I{), VI{) = 1. Moreover, 

n = 1,2 '" 
O<s< OJ. 

(4.10) 

The same is true for A-n(s ± i€). -I/A_I(O) is the 
maximum of the positive definite form, (K(O) I{) , I{) 
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under (<p, v<p) = -1; 

n = 1,2 ... 
O<s< co. 

(4.11) 

Corresponding results hold for s = - (Y ± i~. For 
the proof of (4.10) and (4.11) it is essential to know 
that (1)n(s), v1>n(s) does not change its sign. 

V. BOUND STATES AND RESONANCES 

Eigenelements and eigenvalues of the scattering 
kernel K(s) are analytic functions of s in the cut 
physical sheet (upper half k plane). Because 
IAn(s)1 -7 co (s -7 ro), l/An(s) can be written as a 
dispersion integral 

1 1"' ds' 1m A,.(S) 
An(S) - - 0 ---;- IAn(s) 12 (S' - S) 

n = ±1, ±2 ... (5.1) 

The function An(S) maps the physical sheet onto a 
domain in the A plane bounded by the image of the 
cut. The mapping is conform. This can be seen from 
the differential equations for Un and aun/as: 

).2 (s-iol 

).~ {s+io) 

FIG. 3. Boundary values of AI,2 in the physical sheet for 
S-wave scattering by a square-well potential: 

V={-1r<1 
Or> 1. 

(s + A) 1/2 cot (s + A)1/2 = i(s) 1/2. 

In particular, 

(5.4) 

!:::..Un + SUn + A,.VU,. = 0, 

!:::.. aUn + s au,. + A V au,. = -U _ dAn Vu 

An(O) = (2n + 1)2 ~ ; 
(5.2) 

n = 0,1,2 '" . (5.5) 

as as n as n ds n, 

un and aun/ as are L~ in the cut s plane. Hence, 

dAn (un, U!) (*) , (0) 
-d = -( V *) = - Un, Un sgn 1\,. , 

S Un, Un 
(5.3) 

where we have observed the normalization (4.2). 
(Un, u~) cannot vanish in the cut plane, because 
{Un l. {U~ I are complete (not orthonormal) systems 
in L~. 

The image of the s plane cut under An(S) is a curve 

The potential is repulsive for A < 0 and attractive 
for A > 0, according to the definition of the sign in 
(2.1). The curves C1 • C2 of the lowest eigenvalues are 
shown in Fig. 3. 

A positive or negative value of A lies in the interior 
(left hand of the oriented curve) of a finite number 
of curves Cn or C -n, because the eigenvalues A~n(O) 
of the completely continuous kernel K(s) accumulate 
at A = co. We then have a finite number of bound 
states with binding energy En = - (Yn. determined by 

Cn in the A plane that is mirrorsymmetric with 
respect to the real A axis and intersects the latter or 
in a right angle at An(O), as can be seen from (3.33). 

(A > 0) (5.6) 

If An(O) is a positive eigenvalue, the image of the 
upper boundary lies in 1m A < 0 and vice versa 
for a negative eigenvalue A_n(O); for s -7 co Cn 

approaches A = ro. The cut s plane is the interior 
of a path running around the cut in a positive sense. 
rt is mapped onto the interior of Cn. The image of 
the negative real 8 axis is 

- ro < A :::; "-n(O); "-n(O) < O. 

A simple example is the scattering of S waves by 
a square well potential of range one. The eigenvalues 
An are roots of the equation 

This result is well known from the work of Barg­
manns and, more recently, Schwinger,9 who ex­
tended the proof to the class A of potentials. 

Resonances occur at energies Sn > 0, if, 

(5.7) 

and 1m A~n(Sn) is small. To illuminate this point, 
we consider the total scattering cross section as a 
function of A in the vicinity of a pole An' The scatter­
ing amplitude is given by (n = 2m = 1): 

8 V. Bargmann, Proc. Natl. Acad. Sci. U.S., 38,961 (1952). 
9 J. Schwinger, Proc. Nat!. Acad. Sci. U.S., 47, 122 (1961). 
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A A 
f(k',k) = 411" (#.+>, Vcpk') = 411" (cpk, Vcpk') 

+ A2 L (Un, V~)(Un, Vcpk') sgn A,,(O). (5.8) 
411" ~" An - A 

[Note: (f, g) = J drfg*·] All quantities are to be 
taken at s + iO. Introducing the scattering ampli­
tude i" of un(s + iO), 

Un -7 [e iro1
/
2 /r]fn(n) ( r -7 (X»; 

k = (s)I/2n 
r = rn, 

we obtain in the neighbourhood of the pole An: 

fCk', k) ~ 411"f"C - n)f"cn')/(A" - A); 

(5.9) 

k' = n'· (S)1/2. (5.10) 

Assuming a spherically symmetric potential An must 
correspond to a definite angular momentum 1 and 
f,,(n) '" PI(n). Hence the total cross section is 
given by 

<Ttot ~ (411")(21 + 1) f dn f dn' 1fn(~nI2~fn~r') 12. 

(5.11) 

With (3.33) and (5.7) this becomes a Breit-Wigner 
formula, 

rv 11" 4 (1m An)2 _ ( Vu )2 
<Tto t '" (21 + 1) s (Re A" _ A)2 + (1m An)2 Un, n 

11" r2 (V )2 
= (21 + 1) s (s _ Sn)2 + (r/2)2 Un, Un . (5.12) 

The resonance width r is 

r I 1m An I 2 = dRe An/ds ._ ... 
(5.13) 

The description of resonances presented here 
seems to be similar to a method developed by 
Rollnik,IO where resonances are characterized by 
the condition 

A~(Sn) = A. 

A~(S) are the eigenvalues of the real part of the 
kernel K(s) for a definite potential. But these are 
not the same as the real parts Re An of the eigen­
values of K(s), because K(s) is not normal. 

Is the occurrence of resonances related to the 
properties of A,,(s) on the second sheet? Consider a 
case, where a continuation into the finite second 
sheet is possible. We can no longer infer from (5.3) 
that the mapping of the second sheet onto the A 

10 H. Rollnik, Z. Physik. 145, 639 (1956). 

plane by A,,(S) is conform, because un(s) is not L; 
in contrast to ¢n(S). An is real on the negative real 
axis in the second sheet. It follows from the maxi­
mum property of l/Al( -l/Ll ) that 

(5.14) 

But this cannot hold for all eigenvalues, because 
the; must accumulate at (X) for any finite <T. 

Take our example: S-wave scattering by a square 
well. It may be seen from (5.4) that Al obeys (5.14). 
But A2 arrives at a minimum value at <T = 1 and 
tends to (X) for <T -7 (x). So do all higher eigenvalues. 
Hence, 

n = 2,3··, (5.15) 

(SII means second sheet values). A2(Sr), A2(Sn) map 
the negative real axis onto A2(0) ~ A < (X) and 
A2(-1):::; A ~ A2(0);A2(-1):::; A < (X),respectively. 
(See Fig. 3.) A values below An( -1) are accepted at 
two complex conjugate points in the second sheet 
as has been shown by N ussenzweig. ll This is true 
also for negative A values (repUlsive potential). In 
summary, An(S) is responsible for a 

(a) bound state, if A > An(O); 
n = 2,3, 

(b) virtual state, if An(O) > A ~ An( -1); 
(c) resonance, if An( -1) > A > - (X). 

VI. ANALYTICITY IN s AND A. 

We have proved that generalized spectral repre­
sentations exist for the resolvent kernels G.(s) , K.(s) 
in the case of an indefinite class A potential; 

K.(s) = L ¢,,(s) '¢,,(s) sgn A,,(O) (6.1) 
~" A,,(S) - A 

and similarly for G.(s) in terms of un(s). We may 
infer from (6.1) and the extremal properties of the 
eigenvalues the following statements on analyticity 
in s and A: 

(a) K}.(s) and G}.(s) are meromorphic in the 
topological product of the cut s plane and the entire 
A plane. 

(b) A domain of holomorphy is the topological 
product of the cut s plane and the interior of the 
circle 

IAI = min [AI (0) , -L1(0)] 

in the A plane. 
(c) The boundary values of KI>.(s), G).(s) are con­

tinuous functions in s and have the same analytic 
properties in A as stated under (a) and (b). 

11 H. M. Nussenzweig, Nuclear Phys. 11,499 (1959). 
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(d) The radius of the circle bounding a domain 
of holomorphy in the A plane tends to (X) , if lsi ~ (X) 

in the cut s plane, inclusive on the boundaries. 

(e) lim Kx(s) {Gx(s)} = K(s) {Gx(s) } . (6.2) 
lsl-+OJ 

The first point is also clear from the Fredholm 
theory,4,5 because the latter can be generalized to 
L2 kernels3 and K(s) is L2 in the cut physical sheet 
inclusive boundary values. More important are (b) 
and (c). They give rise to the following theorem 
about the convergence of Born expansions: 

Theorem. Let A V be a class A potential that 
has a different sign only in a finite number of do­
mains in x space. Then an expansion of Kx(s), Gx(s) 
into powers of A (Born expansion) converges uni­
formly and absolutely in x, x' for all s ~ 0 and 
even arbitrary complex s in the physical sheet, if 
and only if neither AV nor -AV has a bound state. 

The proof is clear. The theorem also holds for 
the scattering amplitude, if the potential satisfies 
condition B. Convergence of the Born series is 
sufficient for the absence of bound states of ±A V 
only, if it is required for all sin 0 :::; s < (X). Daviesl2 

has shown that the absence of bound states is 
sufficient for the convergence of the Born series in 

12 E, Davies, Nuclear Phys. 14,465 (1959/60). 

the case of a definite finite range potential. On the 
other side we know from the work of Kohnl3 that 
this is not true for Born expansions of partial wave 
quantities of angular momentum l ~ 1. This is 
clear from the fact that the eigenvalues are not 
bound by the lowest one as it holds for l = 0 and 
in the three-dimensional series. 

The result (d) has been obtained also by Klein 
and Zemach 14 and Wignerl5 by inspection of the 
iterated kernels for equivalent conditions on the 
potential as stated under A. The final point is due 
to the fact that IAn(s)1 ~ (X) for lsi ~ (X). The re­
solvent kernels tend to the "free" kernels and, 
correspondingly, the scattering amplitude to the 
Born approximation. This result is well known from 
Khuri's work on the Fredholm series in potential 
scattering.5 
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Approximations are derived for the bulk parameters of the coherent multiple scattered field in a slab 
region of randomly distributed arbitrary scatterers. (The one-, two-, and three-dimensional cases are 
treated simultaneously.) The propagation number K, and, e. g., E and p., are given explicitly in terms 
of conventional free-space isolated scattering amplitudes; these results generalize existing special forms 
for monopoles, dipoles, cylinders, and spheres. Corresponding approximations are obtained for the 
differential-scattering cross section per unit volume (Le., the incoherent scattering), such that the 
total flux (coherent plus incoherent) fulfills the energy principle explicitly. Scattering and reciprocity 
theorems are derived for a "multiple scattering amplitude" of a scatterer within the distribution, and 
these are used to trace the energy "losses" of the coherent field which "reappear" as incoherent 
scattering. Several applications are considered. 

1. INTRODUCTION 

THE earliest analytical treatment of the scat­
tering of waves by random distributions is 

essentially Rayleigh's theory of the color of the sky.! 
The subject has since received much attention in 
the literature, but we cite only papers related to 
the present analysis, particularly those of Reiche, 2 

Foldy,3 Lax,4 Ament and Urick,5 and Twersky.6 
Additional references are listed elsewhere.4,7 

We consider the one-, two-, and three-dimensional 
problems of a plane wave eik

•
r incident at an arbi­

trary angle on a "uniformly random" distribution 
of arbitrary scatterers in a region bounded by two 
parallel planes (e.g., the "infinite-slab region" of 
Fig. 1). The initial formalism is similar to Foldy's" 
and Lax's4 in that we seek the ensemble average of 
the Green's function representation for the field of 
a fixed configuration of scatterers. Subsequent 
steps essentially generalize Reiche's2 approximation 
procedure for a wave normally incident on a slab 
of dipoles. We introduce approximations in order to 
express the average coherent field in terms of an 
integral over the slab thickness and write the kernel 
of the integral in terms of the "average multiple-

* This work was partially supported by Signal Corps 
Contract DA 36-039 SC 75012. 

1 Lord Rayleigh, Phil. Mag. 47, 375 (1899). 
2 F. Reiche, Ann. Physik SO, 1 (1916); S0, 121 (1916). 
3 L. L. Foldy, Phys. Rev. 67, 107 (1945). 
4 M. Lax, Revs. Modern Phys. 23, 287 (1951); Phys. 

Rev. 85, 621 (1952). 
6 R. J. Urick and W. S. Ament, J. Acoust. Soc. Am. 21, 

115 (1949). This sfecial form was rederived by P. C. Water­
man and R. Truel , J. Math. Phys. 2, 512 (1961). 

6 V. Twersky, "Multiple Scattering of Waves by a Volume 
Distribution of Parallel Cylinders, research report No. 
EM-59, Institute of Mathematical Sciences," New York 
University, 1953 (unpublished). 

7 V. Twersky, J. Research Natl. Bur. Standards 64, 715 
(1960). 
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FIG. 1. Schematic for scattering of plane wave by a distribu­
tion of arbitrary identical scatterers bounded by two parallel 
planes (a "slab region"). Bottom part of drawing suggests 
the "synthetic medium" associated with the coherent 
scattered field. 

scattering amplitude" G of a scatterer within the 
distribution. 

In the present paper we express G in terms of 
the conventional scattering amplitude of a scatterer 
isolated in free space g(ko, k) (where k and ko are 
the incident and scattered propagation vectors). 
This leads to elementary integral equations whose 
solution gives a simple expression for the bulk 
propagation coefficient K (of the medium associated 
with the coherent field) explicitly in terms of special 
values of g. This form K(g) for arbitrary scatterers 
and arbitrary angle of incidence is a generalization 
of various special forms given in the literature: If g 
is restricted to scatterers which are symmetrical to 

700 
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the interfaces, then the present form reduces to one 
given previously by Twersky6 (derived analytically 
for circular cylinders); the additional restriction to 
normal incidence reduces the form to one obtained 
by Ament and Urick5 (derived analytically for 
spheres); the further restriction to monopole or 
dipole scatterers gives the form derived by Reiche, 2 

Foldy,3 and by Lax4 [but Lax's is in terms of g(K, K) 
instead of g(ko, k)J. For the case of small scatterers 
all the above forms reduce to one given essentially 
by Rayleigh.l 

To complete the description of the medium 
associated with the coherent field, we determine the 
average boundary conditions fulfilled at the slab 
interfaces; these plus K (g) yield the macroscopic 
parameters (e.g., e and p.) explicitly in terms of g. 
Introducing an appropriate auxiliary scattering 
amplitude 9 (such that for a semi-infinite slab the 
multiple-scattering amplitude G equals geiK

'
r
), we 

derive its scattering and reciprocity theorems, and 
consider the physical basis of the propagation 
number K in detail. Thus, for lossless scatterers 
we express the coherent attenuation coefficient 
2 1m K in terms of the total scattering cross section 
associated with g, etc. 

Corresponding approximations are obtained for 
the differential scattering cross section per unit 
volume (i.e., the incoherent scattering), such that 
the resulting total flux (coherent plus incoherent) 
fulfills the energy principle explicitly. Using the 
general forms for the energy functions in terms of 
9 and the scattering theorems for 9 we trace in 
detail the energy "losses" of the coherent field 
which "reappear" as incoherent scattering. 

Several applications are considered; e.g., we 
determine the parameters for a distribution of small 
spheres, the behavior of the fields near grazing 
incidence, and the field scattered by a slab dis­
tribution backed by a ground plane. 

The present paper, which neglects "hole correc­
tions," etc., seems limited to sparse concentrations 
of scatterers. Subject to this restriction it provides 
a relatively comprehensive and explicit treatment in 
terms of the conventional scattering amplitude 
g(ko, k). In addition, the entire introductory formal­
ism, as well as theorems relating propagation 
coefficients and multiple scattered amplitudes, etc., 
are germane for alternative analytical procedures 
based on other functions than the free-space ampli­
tude g(ko• k). Thus, in a subsequent paper7a we 
exploit the present general results and recast the 

7. V. Twersky, J. Math. Phys. 3, 724 (1962). 

fields in terms of a "two-space scattering amplitude" 
g(k, K) corresponding to a scatterer excited by the 
coherent field eiK

•
r but radiating into free k space. 

2. NOTATION AND STATEMENT OF THE PROBLEM 

We begin with a brief statement of the usual 
scattering problem for one object, and then proceed 
to configurations of objects, and an ensemble of 
configurations. Additional details are given else­
where.3.4 •

8 

2.1. One Scatterer 

The scattering problem we consider (in one, two, 
or three dimensions) is specified by conditions at 
the scatterer's boundary A and by a wave function 
which in the region external to A fulfills 

if; = cp + v, 

k = 2'1I'/A; 

\7 2 = a;, a! + a;, a; + a; + a!; (2.1) 

a; = a2ja,2, etc. 

Here cp, the source term, is a plane wave 
ik-r 

cp = e k·r = (ki)· (ro) 

= k(z cos a + X sin a), (2.2) 

and v is an outgoing wave at large distances from 
the object (r ~ co): 

lim r<n-l)/2(a,v - ikv) = 0; n = 1,2,3. (2.3) 

For brevity, we use three-dimensional terminology 
for all cases. Similarly, general forms indicating 
surface integrals are to be understood as line integrals 
in two dimensions, and as values at two points in 
one dimension (for which case r is to be read in 
general as Izl cos a, and factors involving x', x,, 
etc., in following equations are redundant). 

We apply Green's theorem to v and to the free 
space Green's functions 

ikx sin " [_ei
_
k 

1 __ '--'-' I_OO_S_"J 
e i2k COS a ' 

eikR ho(kR) 
47rR == i47T'jk ' R = Ir - r/l, (2.4) 

where rand r' label a field point and a point on a 
surface inclosing the scatterer; collectively, we refer 
to these functions as eXo, where 

8 V. Twersky, J. Acoust. Soc. Am. 29, 209 (1957). 



                                                                                                                                    

702 VICTOR TWERSKY 

11k c= - -. 
i2k cos a ' i4 ' i41r 

(2.4') 

Integrating over the volume external to A, we 
obtain the surface integral 

v = c f [Xo(k Ir - r' /) OnV(r') 

- v(r') onXo(k Ir - r' /)] dA(r') 

== {Xo(k Ir - r' /) , v(r', i)} , (2.5) 

where n is the outward normal, and where the 
operational braces include the appropriate constants. 
For convenience, we may add {Xo, q;} = 0 to the 
right-hand side of (2.5), and use 

v = {Xo(k Ir - r' /), 1/;(r', i)}. (2.5') 

The usual boundary conditions on A, and the 
equation for the internal field lead in general to a 
pair of integral equations for specifying the scat­
tered field. However, we do not consider single-body 
problems explicitly. 

If kr » 1, r » r', then 

Xo(k Ir - r'l) I"V X(kr)e- ikO ' f
'; o = r/r, 

X(kr) = eikx sin a+ikl,lcos a, (2/1rkr)eikr-i .. /4, eikT/ikr. 

The corresponding form of v may be written 

vCr) I"V X(kr)g(o, i), 

g(o, i) == {e- ikO ' f
', v(r', i)} = {e- ikO ' f

', 1/;(r', i)}, (2.7) 

where the scattering amplitude g indicates the 
far-field response in the direction of observation 0 

to plane wave excitation of direction of incidence i. 
In distinction to the usually defined scattering 

amplitudes (e.g., f = g/ik in three dimensions) the 
present normalizations were chosen so that for loss­
less scatterers the forward amplitude theorem reads 

-Reg(i,i) = m Ig(0,i)1 2
, (2.8) 

where m is the mean value over all directions of 
observation o. Thus m3 = J dQ/41r, m 2 = J d8/21r 
and m l (for one-dimensional problems, i.e., for a 
slab scatterer) corresponds to one-half the sum of 
the transmitted and reflected values. 

The above scalar forms for one and two dimensions 
also suffice for the usual electromagnetic problems. 
For three-dimensional electromagnetics, for present 
purposes, we may use q;(i)e, e = y /y to indicate 
the incident E or H field, and replace 1/;, v, g by 
vector functions to obtain the analogs of (2.5) and 
(2.7) in a Cartesian representation. The correspond-

ing analog of (2.8) is 

-Re e·g(i, i) = mg(o, i)·g*(o, i) = m Ig(o, i)12. 
(2.9) 

For simplicity, we retain the scalar formalism and 
limit consideration to cases such that g preserves 
the incident "polarization" e in the plane perpen­
dicular to e; specifically, we require9 

g(i, i) = eg(i, i), g(i', i) = eg(i', i), (2.10) 

where i' is the image of i in the plane z = O. [Eq. 
(2.10) holds, for example, for spheres.] The corre­
sponding plane wave image of q; will be written 

I ik'·r q; = e , 

k'·r = (ki')·(ro) = k(-z cos a + xsina). (2.11) 

2.2. Configuration of Many Scatterers 

A fixed configuration of N scatterers is specified 
by boundary conditions on surfaces AI, A 2 , ••• AN, 
located by fixed position vectors r l •.• rN. We write 
the total field as 

1r(r) = q;(r) + U(r) , (2.12) 

where U has the same form as (2.5) with the surface 
of integration inclosing all objects. Breaking up the 
surface into individual portions inclosing individual 
scatterers (see Fig. 1 for geometry) we write 

U(r) = L u,(r - r.), 

user - r,) = {Xo(kR,) , '!r(r. + r;)}" 

R. = r - r, - r:, (2.13) 

where '!r(rs + r;) is the total field at a point on a 
surface inclosing only scatterer 8. Essentially, as for 
the single-body problem, the boundary conditions on 
A. and the equations for the corresponding internal 
fields lead in general to a system of 2N equations 
for the 2N surface fields and their derivatives; how­
ever, we do not consider this system of equations 
explicitly. 

If kR. » 1, and Ir - r.1 » r:, then analogous to 
(2.7) we write 

user - r,) I"V X(k Ir - r, /) G.(o) , 

G () - {-ikO'k', ,T.( + ')} 
8 0 = e , ~ rs rs SJ (2.14) 

where G. is the "multiple scattered amp'litude" of 
scatterer 8 of the configuration. As the other scat­
terers recede to infinity, the functions u. and G. re­
duce to the corresponding functions for an isolated 
scatterer located at r. with reference to the phase 

9 V. Twersky, IRE Trans. AP-S, 81 (1957). 
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origin r = 0 (Le., to their "single-scattered" values 
v.eik'r. and g,e'k' r ,). 

2.3. Ensemble of Configurations 

An ensemble of configurations is specified by 
an appropriate probability distribution function 
W(I, 2, ... N), where 1 stands for all properties 
of scatterer 1, etc. The ensemble average of U may 
be written as 

(U) = L (u.) = L J (us(r - r,».w.Cr,) dr" , , 

Cu,). = ({Xo(kR,) , 'l1}.), = {Xo, ('l1).}., (2.15) 

where (u.). is the average of 'Lt. over all variables 
except r. (and is consequently independent of all 
distribution variables but r.), and where w.(r.) (the 
one-particle spatial-distribution function) is obtained 
by integrating W over the other variables. Similarly, 
we have 

('l1). = cp + (U), 

= cp + (u.). + ~' J (ut).,w .. Cr,;r t ) dr" 

(2.16) 

where < )., indicates an average with two position 
vectors fixed, and where W'I (the two-particle con­
ditional probability density) is obtained by inte­
grating Wlw, over all variables except r, and r,; 
the prime on the sum means t ~ 8. See Foldy,a Lax,' 
and Twerskys for additional general discussion. 

2.4. Statement of the Problem 

surface; thus ('l1Cr, + r'», is the average field at a 
point r' on the scatterer fixed at r,. 

If the "centers" of all scatterers (the end points 
of r.) lie within the "infinite-slab region" 0 < z < d 
(see Fig. 1), then from the symmetry of the distri­
bution we require 

('l1(r. + r'». = eikx
, sin "'('l1Cz, + r'»" (2.19) 

e.g., in three dimensions, the average field at a 
point r' on a scatterer fixed at r. x. + y. + z. 
differs from that at the corresponding point on a 
scatterer fixed at r. = z, only by the phase factor 
introduced by the incident wave (the essential 
feature of Snell's law). Substituting (2.19) into 
(2.18), we obtain 

(U) = P J e,kx.Bina{XoCkR,), ('l1(z, + r'»,} dr,. 

(2.20) 

For three and two dimensions, respectively, we 
introduce the plane-wave representations 

1 12

'-hoCkr) = -- d{3 
211" 0 

j
.-IZ-i<O 

X eik[I~lcosT+sin1'(x:cos(3+Y8in(3)1' d 
SIn r r, 

o 
1 j1<12-'O> HoCkr) = - eik!I.1 COST+XBinTj dr, 
1f -1I"/2+i<::o 

(2.21) 

and integrate over all coordinates but z, [e.g., by 
using 

L: e'k;,;(·- Bin al dx = (211"Ik) oCt - sin a), 

We consider an ensemble of configurations of etc., after transforming to real limits in (2.21)]. 
identical similarly aligned scatterers u. u. We Thus 
assume that W is symmetrical and that 

w,(r,) = pIN, (2.17) 

where p, the one-particle density function (the 
average number of scatterers in unit available 
volume) is independent of 8. Substituting into 
(2.1.5), dropping unnecessary subscripts on u. and 
r~, and summing over 8, we \vrite 

(U(r» = P J (uCr - r,; r,). dr" 

(u). = {Xo(kR,) , ('l1(r, + r'».}, (2.18) 

where (u). is the average wave scattered by an 
object fixed at r. (now a dummy variable for the 
volume integration). For concreteness, we take the 
origin of r' at the center of the sphere circumscribing 
a scatterer and restrict its end point to the seatterer's 

(U) = 

C Iud {eik(x-X') sina Hkl,-z.-,'I CO"", ('l1(Z, + r'»,) dz" 

(2.22) 

Cl = PI, C2 = 2P21k cos a, C3 = 211"P31k2 cos (x, 

where the subscripts indicate the number of dimen­
sions involved. 

In analogy with (2.14), we introduce the "average 
multiple-scattering amplitude" of a scatterer on 
the z axis (r. = z,): 

(u(r - z,». '" X(k Ir - z,i) G(z.; 0), 

G(z.; 0) == (G,(z.; 0». = {e- ikO
'

C
', ('l1(z. + r'».l. 

(2.23) 

In terms of G, we rewrite (U) of (2.22) for 
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z > (z. + Z')max d + z:nax (the forward scattered 3. FORMALISM BASED ON FREE-SPACE SCATTERERS 

field) as 3.1. Average Wave Function 

(U» = 'PC Iod 
e-i')'iG(r; i) dr, 'Y == k cos a. (2.24) 

Similarly for z < (z. + Z')min = Z:nin (the reflected 
field), we write 

(U<) = 'P'C Io
d 

e''YiG(r; i') dr, (2.25) 

where 'P' is the image of 'P in the slab's faces. Within 
the distribution (z:nax < z < d - z{"!n), if we ignore 
that the ranges z - Z{,.in to z, and z to z + z:nax seem 
to call for special treatment as far as the definition 
of (2.23) and the form (U) of (2.22) are concerned, 
we may write 

In the present paper we interpret (2.26) as a set 
of free-space plane waves (w) = eik'ra(O, z) + 
eik

' 'ra' (z, d), i.e., (2.26) indicates a multiple-scat­
tering process in free space, the field at a scatterer 
at z consisting of the source term 'P, plus the free­
space forward scattered fields of the planes of 
scatterers in 0 < r < z, plus the free-space reflected 
fields of the planes z < r < d. From this view it is 
convenient to rewrite (2.26) as 

(w) = ['f+(0, z) + 'f-(z, d)]eikX sin,,; 

'f+(0, Z) = ei"t{ 1 + C L e-i"trG(ri i) dr 1 
'f-(z, d) = e-i-yxC r ei')'iG(r; i') dr. (3.1) 

Using (3.1) in (2.28), we superpose the appropriate 
(2.26) isolated scattering amplitudes and write the corre­

sponding average-scattering amplitude G of (u). as 

For present purposes we regard (2.26) as valid for ° ~ z ~ di similarly, we use (2.24) for z ~ d and 
(2.25) for z ~ O. Thus ('f) is continuous at z = ° 
and z = d, and is fully determined by the average 
multiple scattering amplitude G. 

In order to obtain a simple explicit representation 
of {w), we assume that the two-particle function is 
a product of one-particle forms, and that the average 
with two variables held fixed may be approximated 
by that for one fixed variable (an assumption implicit 
in Reiche,2 and introduced explicitly in Foldy3). 
Thus 

E' '!D" = peN - l)/N ~ p, 
t 

G(ri 0) = g(o, i)'f+(O, 5) + g(o, i')'f-<r, d). (3.2) 

Substituting into (2.26) and introducing 

S+ = Cg(i, i), R+ = Cg(i, i'), 

S_ = Cg(i', i'), R_ = Cg(i', i), 

we obtain the pair of integral equations 

'f+(0, z) = e''Yz 

(3.3) 

+ e''Y' 1" e-i'Y'[S+'f+(O, r) + R+'f-Cr, d)] dr, 
o (3.4) 

'f_Cz,d)=e-i'Y'!.dei'Yi[R_'f+(O, 5)+S-'f-(r, d)] dr, 

(wCr. + r'» •• ~ (w) •. 

Introducing (2.27) into (2.16), we obtain 

(w), ~ (w) + (u). 

(2.27) which hold even if the R's and S's are functions of 
r (i.e., if the average concentration of scatterers, or 
their sizes, etc., vary in the direction perpendicular 

(2.28) to the slab). Differentiating with respect to z yields 

which in view of (2.1), (2.18), and (2.26) is the form 
of the solution for a single object excited by a set 
of plane waves, and radiating into free space. The 
corresponding scattering amplitud6 G of (u). can 
thus be represented by a superposition of scattering 
amplitudes of single objects radiating into free space. 

There are essentially two such representations we 
can obtain: one based on conventional isolated 
scattering amplitudes (2.7) is developed in Sec. 3; 
the other based on "two-space" isolated scattering 
amplitudes is developed in a subsequent paper. 7a 

(3.5) 

Differentiating again with respect to z and using 
(3.5), we obtain in general 

tj;~' + (T_ - T+ - R~/R=)tj;~ 

+ (R+R_ - TS- =F T~ ± LR~/R=)tj;,. = 0, (3.6) 

which, for coefficients independent of z, reduces to 
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For present purposes, we restrict consideration 
to (3.7). 

The solutions of (3.7) may be written as 

1/;= = A=eif
' + B=e;r,,; (3.8) 

r = ~ + r o, r' = ~ - ro: 

iro = [HT + + T _) 2 - R+R_f/2 == [T; - R!]'/2, 

~ = i(S_ + S+)/2. (3.9) 

Substituting (3.8) into (3.5) we obtain 

(ir - T + -R )(A) R_ ir+T_ A: == M(r)·A= 0, 

M(r')·B = 0 (3.10) 

(such that IMI = 0 gives (3.9». The constants in 
(3.8) are determined by (3.10) plus the boundary 
values obtained from (3.6): 

1/;+(0,0) = A+ + B+ = 1, 

1/;_(d, d) = Ajrd + B_eir'd = 0 (3.11) 

(where the first condition "extinguishes" the incident 
field inside the slab, and the second "extinguishes" 
the internal free-space reflected wave). Thus 

A+ = 1/[1 - QQ'em -
f

'
ld

] == D, A_ = -QD, 

(3.12) 
Q = R_ /(T _ + ir) = R_/[Ta + (T: - R!)1/2] , 

Q' = R+/(T + - ir') = R+Q/R_ 

[which also follow on substituting (3.8) into (3.4) 
and equating the coefficients of e·;Y', e

if
', eir" to 

zero]. Consequently, 

(3.13) 
1/;_ = _Qei 6.Z(eif .. - eifoC2d-") D, 

i.e., the sum of the elementary free-space forward 
waves in 1/;+ equals two imaged plane waves traveling 
in a new medium, etc. Thus the internal, reflected, 
and transmitted coherent fields [equal to eikx'ina 

times 1/;+ + 1/;_, 1/;_(0, d), and 1/;+(0, d), respectively) 
are given by 

I¥r = [(1 - Q)eiK .r + Q(l - Q')eiK"r+icr-f'Jd] D, 

K·x = K'·x = kx sin a, 
(3.14) 

'ltn = (U<) = -Q(l - eiCf-f'ld) Dei"""r = m+cp', 

where r - r' = 2ro. These are essentially the 

tion coefficients. The above scalar results also apply 
for electromagnetic problems subject to (2.10). 

The special forms of the above for T + = T _ and 
R+ = R_ were obtained originally6 by solving the 
analogous integral equations for G in terms of g. 
The special case of dipoles (8+=8_= -R+= -R_) 
and normal incidence (a = 0) was treated by 
Reiche2 who introduced essentially the present 
procedure. The integral equations of (3.4) which 
led to (3.14) specify "four-terminal" continuous 
transmission lines. The discrete forms of these 
equations (in which ~ is replaced by a multiple of a 
constant spacing between planes, and the integrals 
by sums) specify a "one-mode" approximation for 
the periodic case (provided the S's and R's are 
replaced by the appropriate values for an isolated 
lattice plane); essentially the corresponding dif­
ference equations for the case of a semi-infinite 
crystal were treated originally by Darwin10 to 
obtain the discrete analogs of the present results. 

Since the final result 'It r of (3.14) for the internal 
field in the synthetic "macroscopic medium" has 
the form AeiK

•
r + A'eiK"r (where the A's are 

independent of distance), while the starting form 
(3.1) at the "microscopic level" was 

'It = a(O, z)e ik.r + a'(z, d)eik"r, 

the present formalism is not "fully self-consistent." 
However, the first-order equations (3.5) give the 
essential physics and serve to make the procedure 
plausible. Thus if we "return from the limit" and 
replace a,1/;+ by its difference form [1/;+(z + ~z) -
1/; + (z) J/ ~z, and regroup the corresponding terms of 
(3.5), we obtain 

1/;+(z+ ~z) = 1/;+(z) + ~z[T+1/;+(z) + R+ 1/;-(z)] , (3.5+) 

i.e., the "forward field" at z + ~ equals that at z 
plus the fraction of forward field transmitted 
through the elementary thickness ~z, plus the 
fraction of "backward field" reflected at z through 
~z. Similarly, for the backward field, 

1/;-(z) = 1/;-(z + ~z) 

Thus (3.5) could have been written directly from 
elementary physical considerations. Indeed essen­
tially such arguments were used by Darwin10 to 
construct the difference-equation analogs of (3.5.) 
for the periodic case. [However, the procedure which 
led us to (3.5) is closer to Ewald'sll analysis of 
scattering by a periodic array of dipoles.] 

forms for a continuous slab, with Q and Q' playing 10 C. G. Darwin, Phil. Mag. 27, 315, 675 (1914). 
11 P. P. Ewald, Ann. Physik 49, I, 117 (1916); 54, 519 

the role of generalized "single-surface" Fresnel reflec- (1917). 



                                                                                                                                    

706 VICTOR TWERSKY 

[The present formalism in terms of free-space 
scattering amplitudes appears limited to sparse 
concentrations (such that 1/ P is much larger than 
the volume of a scatterer), i.e., we have essentially 
the start of a perturbation procedure around the 
properties of free space. To extend this procedure 
to dense distributions requires a more general two­
particle distribution function than used in (2.27). 
Thus if in (2.16) we use L W., = P only for values 
of r, outside some volume V containing scatterer 
s, and use w" = 0 inside V, then instead of (2.28) 
we obtain 

('l1(r.», ~ ('l1(r ,» 

+ (u(r, - r,», - P Iv (u(r. - r,», dr" (2.28') 

where V is the "hole" arising from the size and 
shape of the scatterers, etc. For some cases we would 
expand (u(r. - r,», as a Taylor series of deriva­
tives of (u(r. - r.», and powers of Ir, - r.l, and 
were the first term to suffice, we would obtain (2.28) 
with (u). multiplied by 1 - P V; other simple cases 
arise when the integral in (2.28') is proportional to 
('l1) or to (U). More generally, we would expand the 
integral as a set of plane waves and apply the super­
position principle to the complete setI2 ; such expan­
sions are also useful for "liquid-state" statistics, for 
which we introduce an explicit approximation for the 
pair distribution function W. t in (2.16), and attempt 
to integrate over the total volume. I3 Analytical 
treatments for dense gases based essentially on 
free-space scatterers are given by MazurI4 and his 
associates, and various more physical approaches 
are reviewed by Bottcher.I5 We do not consider 
such procedures, and therby limit the discussion 
of the formalism based on g(k, k) to sparse dis­
tributions.] 

Specular amplitudes. The coefficients ffi+ and ::1+ 
equal the reflection and transmission amplitudes of 
the slab for direction of incidence i. For a wave 

this corresponds to replacing .:1 by -.:1 and Q by Q'. 
Thus the ratios of the two transmitted fields, 
reflected fields equal 
::1+/::1_ = eiCr+r')d = e(s+-S-)~ 

ffi+/ffi_ = R+/R_; (3.15) 

only the first depends on slab thickness. For normal 
incidence the usual reciprocity theorem gives 
g(i, i) = g(i', i') = g( -i, -i); consequently S+ = 
S_, and the first ratio reduces to unity. For scatterers 
symmetrical to the faces of the slab [g(i, i) = g(i', i'), 
and g(i, i') = g(i', i)], both ratios reduce to unity. 
For direction of incidence - i, the reciprocity 
theorem gives a transmission coefficient ::1+ as in 
(3.14) and a reflection coefficient ffi_ as in (3.15); 
for direction of incidence -i' we get ffi+ as in (3.14), 
and ::1_ as in (3.15). (See also Redheffer,I6 for addi­
tional germane results for such "four-terminal" 
networks.) 

Propagation coefficients. The waves in the new 
medium are of the form 
eiKer == eirz+ikx sin (l 

== e- 1m rz+i(Re rZ'+kx sin a). (3.16) 

The planes of constant amplitude are parallel to 
the slab, the attenuation coefficient equaling 21m r. 
The planes of constant phase are given by 

z Re r + kx sin a = k1],(z cos (3 + X sin (3), 

1], = Re r /k cos f3 = sin a/sin (3 

= [(Re r/k)2 + sin2 ar/2
, (3.17) 

where 1/, is the real index of refraction, and f3 is the 
real angle of refraction. 

The propagation coefficients of the medium 
associated with the coherent field, and the complex 
indices of refraction are 

(3.18) 

In particular, for scatterers symmetrical to the slab 
faces, (3.18) reduces to 

incident in the image direction i', we reflect the K2 = e _ i2kS cos a _ S2 + R2, 
structure by interchanging + and - in the above; 

12 Integral equation representations for G in terms of g 
for arbitrary configurations are given by V. Twersky in 
Electromagnetic Waves, edited by R. E. Langer (University 
of Wisconsin Press, Madison, Wisconsin, 1962), pp. 361-389; 
J. Math. Phys. 3, 83 (1962). 

13 See V. Twersky, IRE Trans. AP-7, 8307 (1959) for a 
multiple scattering treatment of a "one-dimensional liquid" 
(e.g., a "random grating") based on the pair distribution 
function used by F. Zernike and J. A. Prins, Z. Phys. 41, 
184 (1927) in their single scattering treatment of the analo­
gous problem. 

14 P. Mazur and M. Mandel, Physica 22, 289, 299 (1956); 
L. Jansen and P. Mazur, ibid. 21, 193 (1955). 

16 C. J. F. Bottcher, Theory of Electric Polarization 
(Elsevier Publishing Company, Princeton, New Jersey, 1952). 

S = S+ = S_, R = R+ = R_, (3.19) 

a form obtained originally by separation of variables 
in circular cylindrical coordinates.6 In terms of 
g = g(i, i) or e·g(i, i), and g' = g(i', i) or e·g(i', i) 
we have in one, two, and three dimensions 

K~ = e - 2iP I kg cos a + p~(g'2 - l), 
K~ = k 2 

- 4ip2g + (2P2/k cos a)2(g,2 - l), (3.20) 

K~ = e - 41TiP3g/k + (2p37r/k2 cos a)2(g ,2 - l). 
16 R. M. Redheffer, J. Math. and Phys. 28, 237 (1950). 
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To facilitate comparison with the three-dimen­
sional results of others, we rewrite K3 of (3.18) in 
terms of the conventionally defined isolated scat­
terer amplitude f = y/ik (the amplitude in 
v'" fe'kr/r): 

K2 = k2 + 411"pf - (211"p/k cos aY(f,2 - r); 

f = f(i, i), e·f(i, i); 

f' = f(i', i), e·f(i', i). (3.21) 

For incidence normal to the slab, (3.21) reduces to 

K2 = e + 411"pf + e~p)\r - f,2) . 

(k + 2~fy _ (211"{1'y 

[k + 2~p (f + 1') J[ k + 2~p (f - 1') 1 (3.22) 

where f' = f( - i, i); this result (with f expressed 
as a series of the usual scattering coefficients) was 
obtained originally by Urick and Ament6 for a slab 
of spheres. For normal incidence on a slab of electric 
dipoles Reiche2 obtained 

K2 = e + 411"pf, (3.23) 

which follows from (3.22) by specializing to dipoles, 
f = -f'. The form was also obtained by Foldy3 for 
general regions of monopoles, f = f'. The result 
obtained by Lax4 has the form (3.23) but involves 
f(K, K) instead of the present f(k, k). Similarly, the 
results obtained by Rayleigh 1 for small scatterers 
and spheres may be put in the general form 

K ~ k + 211"pf/k, (3.24) 

as obtained by expanding the square root of any 
of the above. 

Bulk parameters. The boundary conditions ful­
filled by (\[I) and 0,(\[1) at z = 0, d plus the explicit 
representation for the propagation coefficient (3.18) 
enable us in general to determine the bulk param­
eters of the medium associated with the coherent 
field. From (3.14) we see that (\[I) is continuous at 
the boundaries: cp(O) + \[IR(O) \[11(0), and 
\[IT(d) = \[II(d), or, for brevity, 

B' = -~B (r + r') + i; (Z - Z'), (3.26) 

where the Z's have the form of "impedances." 
Substituting for Q and Q' from (3.12) we obtain 

B = [1 + (8+ + 8_ - R+ - R_)/2i'Yr\ 

B' = B[R_ - R+ - i(8_ - 8+)J/2. 

If the scatterers are symmetrical to the face then 
B' = 0, and (3.26) reduces to 

o \[I B 0 \[I B = 1'. (1 + Q) = 'YZ . 
, out = z io, r 1 - Q r' 

1 = 1 + 8 -:- R. (3.27) 
B ~'Y 

To illustrate the above, we apply (3.27) to the 
electromagnetic case. Thus if the incident field, 
either H, or E

" 
equals e e'k '

r
, then (3.27) provides 

either the bulk permittivity ~ or permeability J.l.: 

Hi} ik.r~} 1 + 8 - R = ee = . 
Ei ' J.l. ik cos a ' 

e = y/y, k cos a = k·z/z EO k·zo (3.28) 

The remaining parameter follows from (3.19) and 
the relation 

(3.29) 

In particular for normal incidence we have 

712 = (1 - 8 ~ R)( 1 + 8 t R), (3.30) 

and consequently 

H 
ik.r 

i = ee ; ~ = l/B = 1 + (8 - R)/ik, 

J.l. = 71
2B = 1 + (8 + R)/ik. (3.31) 

Here 8 ± R = C(y ± y'), with C = PI, 2pdk, 
2P311"/k2. In three dimensions, we write (3.31) in 
terms of f = g/ik as 

~ = 1 + 211"p(f - f')/k2, 

J.l. = 1 + 211"p(f + f')/e. (3.32) 

Similarly it may be shown that 

(3.25) Thus, for example, for small perfectly conducting 
spheres of radius a, we have to lowest order f= k2a3/2 
and f' = -3k2a3/2; consequently ~ ~ 1 + 411"pa3 

'Y (1 + Q 1 + Q') 
B = r - r' 1 - Q + 1 - Q' 

EO r ::. r' (Z + Z'), 

and J.l. ~ 1 - 211"pa3 in accord with alternative 
derivations. Similarly for an electric dipole (f = -f') 
we obtain J.l. = 1 and ~ = 1 + 411"pf/k2, where 411"f/k2 
is identified with the usual electric dipole moment. 

As a more general illustration we consider the 
results for arbitrary angle of incidence on a slab of 
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"adjustable" electric dipoles (e.g., small dielectric 
spheres of radius a and permittivity E', or the 
elementary model of an electron). For this case 
and Ei = ecp, we have f = l' = fo [where 
fo = k2a3(E' - 1)/(E' + 2) for spheres]; on the other 
hand, for Hi = ecp, we have l' = -f cos 2a, f = fo. 
Using (3.28) for either E or f.L, and (3.21) to obtain 
the other from ",2 = Ef.L, we find 

Ei = ecp: E, = 1 + M = 1 + 47rpfo/e = "'!, 
f.L, = 1. 

Hi ecp: Em = 1 + :J1, 

"',;. = 1 + M + M2 sin2 
a, 

(e.g., the restrictions on g required for unit perme­
ability or unit permittivity, or for polarization 
independent bulk parameters) will be found else­
where.!7 

3.2. Physical Bases of the Propagation Number 

Rayleigh's approximation. The propagation num­
ber in terms of g has a simple physical interpre­
tation provided that Cg is small enough for the 
higher order terms to be neglected. For this range 
we obtain essentially Rayleigh's result! generalized 
to arbitrary scatterers: 

r+ = ~ + r ;::::;; 'Y - is+ = 'Y - iCg(i, i) == r R , 

f.Lm = 1 + M2 sin2 a/(l + M). (3.33) (3.34) 

Thus these results indicate that E is independent of 
polarization for all angles of incidence, but that f.L 

and '" depend on polarization to the second order 
of a generally small quantity. (The slight polariza­
tion dependence of f.L and '" for this special case 
indicates the limitations of the present approach.) 
For normal incidence, these results reduce to those 
obtained originally by Reiche.2 

As another illustration we consider the behavior 
of the various functions of this section for near 
grazing incidence a = (7r/2) - 'T ---t 7r/2, and 
demonstrate that no singularities arise. As shown 
elsewhere,8.9 as T ---t 0, the sumf + l' is nonvanishing 
while the difference f - l' vanishes as T2. Con­
sequently, for T ---t 0, we find that (S - R)/i'Y ---t M 

h
'l 2 0, 

w 1 e T (S + R)/i'Y ---t Po, such that Mo and Po are 
nonvanishing constants. From (3.29) it follows that 
E,f.L---t1 + Mo;similarly",2 = f.LE---t1 +Po(l + M o), 
and r2 ---t epo(l + Mo) == N~. 

In order to determine the behavior of the fields 
for a = (7r/2) - T ---t 7r/2, we note that ZT ---t kPo/No, 
and that consequently Q = (Z - l)/(Z + 1) I"J 

1 - 2NoT/kPo ---t 1. Using this result in (3.14) we 
see that the transmitted and internal fields vanish 
and that the reflected field reduces to \]I R I"J - cp' ~ 
cp'(2No/kPo)Ti cot Nod ---t _cpl. Thus independently 
of polarization the reflected field reduces linearly 
to - cp' as the "grazing angle" T vanishes the limit 
being that of a perfect reflector govern~d by the 
boundary condition of vanishing wave function 
for either polarization: The incident wave is reflected 
wit.h ~ ~hase. chan~e of 7r with no amplitude change. 
ThIS IS IdentICal wIth the result obtained previously 
for planar random distributions of scatterers 
("random screens"), and for random distributions 
of bosses on a ground plane ("rough surfaces,,).8.9 

Additional applications of the present formalism 

which states that the component of the propagation 
vector in the direction normal to the slab equals 
the free-space value 'Y = k cos a perturbed by the 
effects of a single-scattering traversal of unit 
thickness of material. This result may be obtained 
directly by an elementary procedure based on 
asymptotic forms and a stationary phase evaluation. 
Thus the far scattered field of a single object at 
r. excited by eikor 

= cp equals JC(k Ir - r.l)g(o, i)eik
''', 

and p times this function integrated over a plane 
parallel to the slab face equals the contribution 
of a layer of unit thickness. Evaluating the integral 
by the method of stationary phase gives cpCg(i, i) 
as the forward wave scattered by an elementary 
layer; the total transmitted field at z is thus 
cp(l. + Cgz) ;::::;; eikx'ina+i(~-iCo)z. [For the electromag-
netIc case, we use cpe and JC(k Ir - r.l)g(o, i)eik

'
r
., 

and obtain the same forward waves in terms of 
g(i, i) = g(i, i) ·e.] The same result follows from 
an equivalent argument based on Fresnel zones: 
the size of the first Fresnel zone is 2(Ar)!/2 sec a or 
7rrA sec a in two or three dimensions (provided 
A « r cos2 a) ; thus cpCg is proportional to the forward 
scattered wave of an element at the center of the 
first zone times the number of elements in the zone. 

The real part of r R of (3.34) equals the phase 
change normal to the slab arising from a single 
scattering traversal of unit thickness. Twice the 
imaginary part of r R, the attenuation coefficient, 
equals 

21m r R = -2CRe g(i, i). (3.35) 

Since the total energy cross section p = Po + P. 
(absorption plus scattering cross sections) of an 
isolated object is given by 

17 V. Twersky, "On Scattering of Waves by a Slab Region 
of Ra?domly I?istributed Objects," Report EDL-E26, 
Sylvama Electromc Defense Laboratories, 1958 (unpublished). 
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p = Pa + p. = Pa + 2Co;m Ig(o, i) 12 

= -2CoReg(i,i), 

Co == COS a, 2/k, 

and since C = CoP sec a, we obtain 

21m r R = ppseca, 

(3.36) 

(3.37) 

where p sec a times unit volume is the number of 
scatterers irradiated by unit area of wave front in 
traversing unit thickness, and e-2Imr 

II = e-PP3eca 

is the corresponding energy loss, the resultant time­
averaged coherent power at z + dz equaling that 
at z less the fraction scattered and absorbed by the 
included elements. From the physical meaning of 
the terms, one could start with 

-2ImrRCz+t.z) -2ImrR'(1 pp A) e =e ---uz 
cos a 

and proceed to the limit 

fixed at z within the distribution as 

G(z; 0) = S(o, i)eirZ D + S(o, i')Qeif',+icr-r')d D, 

S(o, i) = g(o, i) - g(o, i')Q, 

S(o, i') = g(o, i') - g(o, i)Q', (3.39) 

where S(o, i) is associated with e'K'
r
, etc. 

If the region is semi-infinite (d --7 co), then (3.39) 
reduces to 

G(z; 0) = S(o, i)eirZ , (3.40) 

which indicates that S plays the same role in r as g 
plays in r R' More explicitly, since 

Q = [S+ + i('Y - r)]/R+ 

[as obtained from Q = R_/(T_ + ir) of (3.12), the 
relation R_R+ = (T + - ir)(T _ + ir) of (3.9), 
and the definition T ... = i'Y + S .. ], it follows that 

SCi, i) = g(i, i) - g(i, i')Q 

= (8+ - R+Q)/C = i(r - 'Y)/C. 

to obtain (3.37); essentially this procedure was Consequently 
used by Rayleigh! for lossless scatterers for which r = "1 - iCS(i, i) (3.41) 

21m r R = pp sec ex = 2C;m Ig(o, i)12. (3.38) has the sameform as r,(g) of (3.34). We now define 

F or the three-dimensional case of small lossless 
arbitrary scatterers, Rayleigh approximated 9 by 
its leading term (proportional to the volume of the 
scatterer divided by i'A3) , say gR. He used gR and 
essentially the stationary phase procedure to obtain 
Re rR = "1 - iCg R ; he then used the physical 
argument mentioned prior to (3.38) to obtain 
2 1m r R ~ 2C;m IgR(O, iW. In addition, for small 
loss less spheres, Rayleigh used sufficient terms of 
the Legendre series expansion of 9 to obtain both 
the leading phase and amplitude components of r R, 

and demonstrated that the corresponding value of 
1m r R was identically that obtained through energy 
considerations (e.g., by integrating the square of 
the leading term of the series over the angle of 
observation). Thus although Rayleigh did not use 
the cross section theorem (3.36) explicitly, he 
essentially demonstrated that (2.8) held for small 
lossless spheres. More generally, Rayleigh's separate 
treatment of the phase and intensity effects made 
maximum use of the incomplete representation 
gR for g. 

The complete form of r. The analogous physical 
interpretation for the complete form of r follows 
in terms of a different scattering amplitude, say S. 
Refcring back to (3.2) and (3.13), we write the 
average multiple scattered amplitude for a scatterer 

a corresponding cross section P through 

21m r = 2CRe SCi, i) == pPsec, (3.42) 

and complete the analogy by showing that P has 
the required characteristics. 

In particular, for lossless scatterers, the average 
of IS(o, i)1 2 over angles of observation equals 

;m IS(o, iW = ;m[lg(o, iW + IQg(o, i'W 
-2 Re g*(o, i)g(o, i')Q). 

Using the general theorem for an isolated lossless 
scatterer, 

-2;mg*(0, i)g(o, j) = g(i, j) + g*(j, i), (3.43) 

we obtain 

C;m 18j2 = -Re [S+ + S_ IQI2 - (R~ + R+)Q] 

= (1 - IQn 1m r, 
where we used Re (R+Q) = Re 8+ + 1m r, and 
Re (R!Q) = Re (S_ - 1m r) IQI2. Thus for lossless 
elements, 

21m r = -2CRe SCi, i) 

= 2C;m IS(o, i) 12/(1 - IQn, (3.44) 

where (as discussed fully in Sec. 3.3) 1 - IQI2 is the 
fraction of incident energy flux transmitted into 
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the slab region. Comparison with (3.42) gives 

P = -2Co Re SCi, i) 

= 2Com?: /S(o, i)/2/(1 - /Qn, 

From Qi = Q of (3.12) and S(o, r) of (3.39) we have 

i(r - 'Y) = S+ - QR+ = CS(i, i), 
(3.50) 

i(r + 1') = (R/Q) - S_ = CS(i', i)/Q, 
Co=C/psec(X. (3.45) and consequently 

Thus, essentially as for an isolated lossless scatterers, 
the function P is the power outflow 

2Com?: Is(o, iW e-i2Imr, 

an element diverts from the forward traveling 
coherent wave (diverts to incoherent scattering as 
shown in Sec. 3.3) divided by the incident coherent 
forward flux per unit area (1 - IQne-2Imr ,. 

Scattering theorems. In order to include absorp­
tion, and to derive additional relations for the 
amplitudes, we consider the elementary scattering 
process defined by S, i.e., the free-space process of a 
single object excited simultaneously by two plane 
waves cP and -Qcp'. By superposition, the total 
field equals 

cf>(i) = cf>i + CO;; cf>; = cp - Qcp' == CPi - Q;cp;" 

CO = Vi - QiVi', (3.46) 

where Vi is the field scattered by an isolated object 
in response to CPi (i.e., as in Sec. 2.1), and Vi' is 
the response to CPi" We have 

CO = {JCo(k Ir - r~ /) , CO(r', i') I "-' JC(kr) S( 0, i), 

S(o, i) = {cp~(r'), CO(r', i) ) 
(3.47) 

= g(o, i) - Qig(O, i'); 

The total time averaged energy flow into the 
scatterer is proportional to - {cf>*(r'), cf>(r') I and 
the total outflow to {CO*(r'), CO (r') j. We define the 
corresponding energy cross sections to be 

P a == - { cf>*(r'), cf>(r') I b 

= -2Re {cf>~, CO}b - {CO*, CO}b, 

p. == {CO*(r'), CO(r')}b = 2m?: /S(o, i) 12 b; 
(:3.48) 

1 ( 2 271") Co 
b = -1-_--'-c-/Q----c/2 cos (X, k '7?' = 1 _ /Q/ 2 , 

where the second form of p. follows on using Green's 
theorem to replace { } by the surface integral at GO, 

and then using the asymptotic for of CO. The total 
cross section is thus 

P == P a + p. = -2bRe {cf>t, CO} 

-2bRe {(CPi - QiCPi')*, CO(r', i») 

-1m r/2C = Re SCi, i) = Re [SCi', i)/QJ 

= Re [sCi', i)Q*]//QI 2
• (3.51) 

Eliminating S(i', i) from (3.49) we obtain, in accord 
with (3.42), 

P = 2b(1 - IQI2) Re SCi, i) 

= -2C Re SCi, i)/ p sec a. (3.52) 

[The phase component of r may also be inter­
preted on the basis of the process (3.46), the phase 
change of ea. being determined by the free space 
phase factor 'Y plus the response of an isolated 
elementary layer of scatterers to cP - Qcp'. Both 
phase and amplitude effects are clear from the first­
order equations (3.5); thus a,1/;+ = (il'+S+)1/;+ +R+1/;_ 
states that the change in the forward free-space 
field 1/;+ equals the result of the transmission of the 
wave through an elementary layer plus the reflection 
of the backward free-space wave at the boundary 
of the layer. In terms of the field in the semi-infinite 
medium, we have [from (3.13)] 1/;+ = elY' and 
1/;_ = _QeH

'; consequently (3.5) equals a,elf
, = 

(il' + S+ - QR+)eir , = [il' + CS(i, i)]eif ', which 
equals ireH

' as required.] 
The elementary process defined in (3.46) leads to 

additional relations that S fulfills. Thus if we apply 
Green's theorem in the external region to cf>*(i) and 
cf>(J"), then for lossless scatterers 

-2m?:S*(s, i)S(s, j) = SCi, j) 

- Q~S(i', j) + S*(j, i) - Q,S*(j', i) (3.53) 

(a generalization of (3.43) which reduces to (3.43) if 
Q. = Qi = 0). If j = i, Q, = Q, then (3.53) reduces 
to the energy theorem 

-m?: /S(o, i)/2 = Re [sCi, i) - Q*S(i', i)] 

= (1 - IQI2) Re SCi, i) 

= (1-IQI 2)Re[S(i',i)/Q]. 

Another special case of present interest is j 
Qi = Q, Q, = Q'; here we use 

-i(r' + 1') = S_ - R_Q' = CSCi', i), 

-i(r' - 'Y) = (R+/Q') - S+ = CS(i, i')/Q' 

(3.54) 

., 
z, 

(3.55) 

-2bRe [SCi, i) - Q;S(i', i)J. (3.49) together with (3.50) and (3,;"53) to obtain 
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-2C;m:S*(o, i)S(o, i') = i(r* - r')(Q' - Q*), 

CRe ;m:S*(o, i)S(o, i') = Re ra 1m (Q + Q') 

- 1m .:l Re (Q - Q'). (3.56) 

If the scatterers are symmetrical to the slab face, 
then (3.56) reduces to 

;m:S*(o, i)S(o, i') = -Re [SCi, i') - Q*S(i, i)] 

= 2 Re r 1m Q/C. (3.57) 

The S's may also be used to represent the propaga­
tion function e.g., K2 = e - C2S(i, i)S(i', i)/Q, etc. 

Reciprocity theorem. Green's theorem applied to 
<fI(i) and <fI(j) in the interior region of the scatterer 
gives {<fI(i), <fI(j)} = 0, and since {<fIi' <fI;} = 0, and 
{'Vi, 'V;}. = {'Vi, 'V;} '" = 0, we obtain 

Consequently 

S(-i, j) - QiS(-i', j) 

= S(-j, i) - QiS(-j', i), (3.58) 

which is the extension of the reciprocity principle 
to a scatterer excited simultaneously by two waves. 
If Q. = Q; = 0, then (3.58) reduces to the usual 
relation for one exciting wave 

g(-i, j) = g(-j, i). (3.59) 

S(-i, -i') = S(i', i)'+ Q[g(i', i') - g(i, i)]. (3.62) 

The "correction terms" in (3.62) vanish for scatterers 
symmetrical to the image plane, for which case 
[using g(i, i') = g(i', i)], we also have 

S(i', i') = sCi, i), S(i', i) = sCi, i'). (3.63) 

3.3. Average Intensity and Energy Flux 

In order to complete the discussion of the scat­
tering losses shown by the coherent field we derive 
the "energy theorem" for the total average power 
(the sum of the "coherent" and "incoherent" 
components), and show that it is satisfied by our 
explicit forms for the power components in terms 
of rand S. Equivalently, our procedure demon­
strates that the energy theorem for the distribution 
leads to the same theorems for rand S obtained 
by isolated scatterer considerations in Sec. 3.2 (and 
this is of particular interest for models7a not based 
on free-space scatterers, i.e., for alternative formal­
isms, the results of this section provide restrictions 
which help define the appropriate elementary 
scatterer) . 

Average intensity. For a single configuration, the 
"intensity" is 1'lt12 = Iso + V12. Its ensemble average 
may be written 

Regrouping the terms of (3.58) and using the (I'ltn = 1('lt)12 + V, 

definition of S, we obtain V = (IV - (V)n = (1U12) - I(V)1 2
, (3.64) 

S(-i, j) - S(-j, i) 

= QiS(-i', j) - QiS(-j', i) 

= Qig(-i', j) - Qig(-j', i). (3.60) 

Thus S possesses the "reciprocity in angles" shown 
by g in (3.59) only if the right-hand side of (3.60) 
vanishes, e.g., if the scatterer is symmetrical to the 
plane in which i and j have been imaged (i.e., 
g(-i',j) = g(-i,j') = g(j', -i», and provided that 
Qi = Qi' 

For the particular values of Q. of interest for 
the coherent field, we have Q. = Q-i' = Q, and 
Q., = Q-i = Q'; in addition, Qg(i, i') = Q'g(i', i). 
Consequently for j = -i in (3.60) we obtain 

S(-i, -i) = sCi, i); (3.61) 

thus the case of forward scattering fulfills the 
elementary relation. On the other hand, the forms 
for j = i' and j = -i' do not: 

S(-i, i') = S(-i', i) 

+ Q[g(-i', i') - g(-i, i)g(i, i')/g(i', i)], 

where the "incoherent intensity" V (the absolute 
mean square fluctuation of 'It from its mean value 
('It)) is given by 

V = 11 [L' L (u,u~)"w,w" 
L L (U')8(U~),W.W,] dr, dr, 

+ L 1 (lu.1 2
).w, dr, 

= / 11 [N ;. 1 (u,u~)" - (U')'(U~),J dr, dr, 

+ p 1 (lu.1 2
). dr,; (3.65) 

here (u,). represents (u(r - r.»., etc., N equals the 
number of scatterers, and we used w, = piN and 
w.w •• = //N2. 

Using (N - l)/N ~ 1, and 

(u,u~)" ~ (u,).(u~)" (3.66) 

we obtain 
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v ~ p J l(u,).1 2 
dr. (3.67) 

which is adequate for our present purposes. 
The far field form of (3.67) may be written 

V "" p J IJC(k Ir - r.l) 12 IG(z.; s) I dr" 

r - r 
s = ' Ir - r,1 ' (3.68) 

where IJCI2 is given in (2.6). Introducing q as the 
"differential scattering cross section" of the unit 
volume of scatterers located at z., i.e., 

(3.69) 

and using dx, dy, = -Ir - r,1 2 sec 0, dQ., 
in three dimensions, and dx, = -Ir - r,l sec 0, dO" 
in two (where cos O. = s· Zo), we rewrite (3.68) 
inside the slab as 

V = [f f' - f fdJq(Z.; s) dQ·o dz. 
+l 0 -l. cos • 

== V+(O, z) + V_(z, d), (3.70) 

where the integrals over the forward and back 
half-spaces of angles in three dimensions have Q, 

replaced by 0, in two dimensions, and are to be 
replaced by the two values O. = a, 7r - a in one 
dimension. Outside the slab, we have 

V = V+(O, d), z > d; (3.71) 
V = V-CO, d), z < d, 

which are the variances of the coherent transmitted 
and reflected fields, respectively. We may substitute 
the explicit forms for q in the above and integrate 
directly over z,. 

The average energy flux. For a single configura­
tion, the total time averaged energy flux per unit 
area divided by the time-averaged incident flux 
density equals J = Re ['l1* V 'l1/ik]. Using 
V'l1 = V cp + V L u, = ikcp + LV. u., and 
(L V, u.) = V L (u.) = V(U), we obtain the 
ensemble average 

(J) = Re [i + cp*(i + V /ik)(U) 

+ L L (u~V.u./ik)] == C + I. (3.72) 

Here C, the "coherent flux", equals 

C = Re [('l1)*V('l1)/ik] , (3.73) 

and I, the "incoherent flux", is analogous to V 
of (3.65). 

If the scatterers are lossless, then Green's theorem 
applied to 'l1* and 'l1 gives § J ·dA = 0 for a fixed 
configuration; consequently § (J)·dA = 0 (the 

time averaged, ensemble averaged energy flow 
through any closed surface equals zero). It then 
follows from Gauss' theorem that V· 0) = 0, and 
since axO) 'Xo and ay(J) 'Yo vanish because of 
symmetry, we obtain a .(J). ZO = O. Consequently 

O)'Zo = (C + I)·zo = J o = const. (3.74) 

This energy theorem (that the component of the 
average flux normal to a slab region of nonabsorbing 
scatterers does not vary along the normal) is of 
course a consequence of the symmetry of the infinite 
slab excited by a plane wave; there are no scattering 
energy losses in any real sense for this problem, 
there being no place for energy to get lost. However, 
it is convenient to describe the history of the "beam" 
whose cross section is unit area of incident wave 
front, and the discussion of the corresponding 
coherent and incoherent components of the flux 
facilitates identifying the "losses" of the coherent 
flux indicated by the attenuation coefficient 2 1m r 
with the corresponding incoherent flux. (In a 
practical situation involving a bounded incident 
beam, the scattering losses along the coherent beam 
also appear in other directions as the incoherent 
flux, and even when I and C overlap in space, they 
can be "separated" by appropriate measurement 
procedures-at least in microwave experiments.) 

In order to trace the energy loss of the coherent 
field we use 

I ~ L (u.)*(Vu./ik) "" L l(u,)1 2 s == yes) (3.75) 

where yes) indicates the insertion of 

s = (r - r.)/Ir - r,l 
inside the integrals of (3.68) and (3.70). The asymp­
totic form suffices, since the coherent power loss 
via scattering may radiate directly to infinity as 
far as the effects shown by r are concerned. Phy­
sically speaking, any rescattering of the incoherent 
radiation cannot affect the coherent field: although 
the incoherent flux contributes in the directions in 
which the coherent flux is observed, it cannot 
become "coherent." 

Using (3.73), (3.74), and (3.75), we obtain for 
z < 0, 

(C + I)· ZO = Re [i + cp*(U <)(i + i') + i' I(u <)1 2
]. Zo 

+ V_(s'Zo) = (1 - ICRj2) cos a + V_(cos 0,), (3.76) 

where the "reflection coefficient" ICRI2 = I'l1 R I2 is 
given in (3.14), and where 

V_(cos 0,) = -1 ld q(z,; s) dQ dz,. (3.77) 
-1/2 0 
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Similarly, for z > d, we obtain 

(C + I)·zo = 131 2 COSa + V+(cos e.), (3.78) 

where 1312 = 1'lt 7·1 2 is given in (3.14), and where 

V+(cos e.) = J fd q(z.j s) dQ dz,. (3.79) 
1/2 0 

Using (3.74), we equate (3.76) to (3.78) and obtain 

(1 - 1(R12) cos a + V_(cos e.) 

= 131 2 cos a + V+(cos es ) 

and consequently 

const, (3.80) 

1 - 1(RI 2 
- 131 2 = sec a[V+(cos e.) - V_(cos e.)J 

d 

(Jin)' Zo == /.'1(Z) /2 COS a + V(Zj COS e,) == J o, (3.83) 

and since the incoherent component is continuous at 
Z = 0, d it follows that the coherent component is 
also continuous: 

(1 - /(Rn = /.'1(0) 1\ (3.84) 

Thus from the average boundary conditions (3.26) 
and (3.25), we have 

/.'1(z) 12 = Re ['lt~(B a,'lt[ + B''lt/)/ik cos a], (3.85) 

where 'It[ is defined in (3.14), and Band B' are 
given in (3.27). In particular, for scatterers sym­
metrical to the interfaces, the internal coherent 
field equals 

= sec a 10 ~(z.j s) dz., (3.81) Cin = Re ('lt~BV'lt [/ik) = l'lt /12 Re (BK/k) , 

where 

~w = f q(Sj s) dQ, = 2C~ IG(sj s) 12 cos a 

= 2C IDI2 ~ Is(s, i)eifl' 

+ Qs(s, i')eif't+id(r-r', 12 COS a (3.82) 

is the average total scattering cross section for a unit 
volume at a distance S within the slab. Thus the 
energy diverted from unit area of incident wave 
front by coherent reflection and transmission equals 
the total energy incoherently scattered by the 
elements irradiated by unit area of wave front. 
[Redefining ~ as the sum of absorption plus scat­
tering cross sections, we extend (3.81) directly to 
lossy scatterers.] 

In order to show that our explicit forms for 
1(R1 2

, 1312, and q fulfill (3.82), we use essentially 
(3.54) and (3.56) to reduce (3.82): 

IDJ2 1(1 - JQJ2)2 1m re-2Imf l' 

_ (1 - /Q,/2) /Q/ 2 2 1m r'e- 2Im f'H 1m fod 

Re (BK/lc) = zoReZ cos a + xoReBsina, (3.85') 

where 

1 + Q 1 _ IQ/ 2 

Re Z = Re 1 _ Q = ~Q12 

and B- 1 equals E or jJ.. The direction of coherent 
power flow is defined by the unit vector 

Re (BK/k) cos lI/Re Z cos a 

such that tan 11 = Re B tan a/Re Z. 
We use (3.83) to trace the energy loss of the 

internal coherent field. Writing 

/.'1(Z2)/2 - /.'1(ZIW = ~ /.'1/ 2 
= - sec a~V(zj cos e.), 

and using 

V(Zj cos e.) = V+(O, Zj cos e.) + V_(z, dj cos e.), 

etc., [where 0, z in V + and z, d in V_indicate the 
limits on the integrals in (3.79) and (3.77), respec­
tively], we obtain 

~V = V+(ZI,Z2jCOSe.) - V_(ZI, Z2j cos e.). 

_ 2 Re [i(r* _ r')Q(Q' _ Q*)e- i (r*-f"l'+;2fodJl Thus [essentially as for (3.81)] we have 

= ~/cos aj 

integrating the result over S gives 

fd _~_ ds = _ IDI2 (1 _ IQI2) [e-2 1m rd - IJ 
Jo cos a 

+ IDI2 (1 _ /Q'/2) /Q1 2 [e-2Imrd _ e-4Im !'odJ 

+ 2 Re /D 12 Q(QI - Q*)(e-2 
1m rd _ ei2I' od)J 

which equals 1 - 1(R/2 - 13/2 as obtained from (3.14). 

The normal flux inside the slab region also equals 
(3.74), i.e., 

/.'1(Z2W - /.'1(ZI)/2 = -sec a J" (.'J(Sj i) ds, (3.86) 
" 

i.e., the energy loss from unit area of the coherent 
field in traversing the thickness of distribution 
Z2 - ZI equals the total incoherent scattering of the 
scatterers in the volume 1 X sec a X Z2 - ZI' If 
ZI = 0, Z2 = d, then (3.86) reduces to (2.81). Essen­
tially as for (3.81), we may verify directly that our 
explicit forms for .'1 and (.'J fulfill (3.86). 

The explicit forms also determine the constant 
J o in (3.74), (3.80), and (3.83). Using (3.83) with 
the two components of V = V + (0, z) + V _ (z, d) 
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written in the form V+(O, z) = V+(O, ) + V+( ,z), 
V_(z, d) = V_( , d) + L(z, ) (corresponding to 
the terms of the evaluated integrals arising from 
the upper and lower limits), we see that 

cos a /.'1(zW + V+( , z) + V_(z, ) = O. 

Thus 

-d S z S d of scatterers symmetrical to the inter­
faces [such that g(o, i) = g(o', i')J, we see that 
(3.13), (3.14), and (3.39) reduce to 

1/t+(i) = Dei(r-'l'ld[eirz _ Q2eir(2d- zl] , 

1/t-(i) = _Dei(r-'l'ldQ[eirz _ eif (2d- zl], 

'l'I = D(1 - Q)ei(r-'l'l[e irz + QeH (2d-,l], 

D = [1 - Q2eiHdrt, 
(3.90) 

J o = V+(O,) + V_( ,d) = /D/
2 C cos a 

X {;m![fl + f2e-4 1m rod + Re (f3e,Hod)] 

+ ;m-![fl + f2 + Re f3]e- 2 
1m rd} , 

'l'R(i) = _Qe- i2 'l'd(I - eiHd) Dcp', 

(3.87) 'l'r(i) = (1 _ Q2)em -'Yl2dDcp, 

f 
= 1£1(0, i)/2 f = /Qg(O, i,)/2 

1 - 1m r' 2 - 1m r' , G(z; 0, i) = g(o, i)1/t+Ci) + g(o, i')1/t_(i) 

= Dei(r-'l'ld[S(o, i)eHz + £1(0, i')Qeir (2d-zl]. (3.91) 

f 
= 4£1*(0, i) £1(0, i')Q 

3 - icr* - r') , 

where ;ml/2 and ;m-1/2 represent 

Similarly for an incident wave cp' (the image of cp) 
the normalized we interchange z and -z in the above; we indicate 

integrals over the forward and back angular regions; 
here we may eliminate 1m r, etc. From (3.87) and 
(3.80) it follows that 

1~12 = [V+(O,) + V-C ,d) - V+CO, d)] 
cos a 

cos a 

(3.88) 

1 _ 1<R12 = [V+CO, ) + V-C ,d) - V-CO, d)] 
cos a 

= [V+(O, ) - V-CO, )] 
cos a 

= ID/2 C;m[fl + f2e-4 1m rod + Re f3e-2 1m rod], 

which may be verified by using (3.54) and (3.52), 
and 1~12 and 1<R12 of (3.14). Thus we have related 
1~12 to the total incoherent scattering of a layer at 
the slab face d, and (1 - I(12) to that of a layer 
at the slab face O. 

For d ~ 0), Eq. C3.88) reduces to 

J o = (C cos a/1m r);m1/2 Is 0, i)12, 

this by 

'l'(i'; z, - z) = 'l'(i; - z, z). (3.92) 

The corresponding multiple scattered amplitude 
equals 

GCz; 0, i') = gCo, i')1/t+Ci') + gCo, i)1/t_(i') 

= DeHr-'Yld[S(o, i')e- Hz + QS(o, i)eir '+i2rd]. (3.93) 

The sum and difference of the above sets, say 
cp* = 'l'(i) ± 'l'(i'), are the required functions in 
the region z < 0 for cp incident on the slab region 
-d to 0 backed by a "ground plane" at z = O. The 
function cp+ (such that ozCp+ = 0 at z = 0) applies 
for a rigid plane in acoustics, or for a perfect con­
ductor and E in the plane of incidence in electro­
magnetics; similarly cp- (which vanishes at z = 0) 
applies for a free plane in acoustics, or for a perfect 
conductor and E perpendicular to the plane of 
incidence. Thus 

(3.94) 

cp; = 'l'R(i) ± 'l'rCi') = _e- i2 'Y d(Q =F eiHd) D ... 

The corresponding multiple scattered amplitude is 

F.Cz; 0, i) = G(z; 0, i) ± G(z; 0, i') 
(3.89) 

= ei(r-'l'ld[S(o, i)eirz ± SCo, i')e- ifz
] D •. 

3.4. Slab Distribution on a Ground Plane 

Using the image technique we now apply the 
above to treat a slab distribution of scatterers 
(symmetrical to the interfaces) backed by a "ground 
plane." 

For a plane wave cp incident on a slab region 

(3.95) 

The flux corresponding to (3.70), etc., is obtained 
in terms of IFI2 integrated from -d to +d, i.e., we 
require the intensity contributions of the scatterers 
in the range -d to 0 plus the contributions of those 
in the image range 0 to d. The appropriate energy 
theorems follow by inspection of the previous 
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results. In particular, the incident, coherent­
reflected, and incoherent scattered fluxes for lossless 
scatterers are related hy 

1 - I<I>;I = sec a [,/2 dQ fd q=(t; s) dt, 

q=(t; s) = (cos a, :k ' !2)P 1F=12. (3.96) 

In order to demonstrate that this relation holds 
for the present explicit forms, we first integrate 
over t: 

J dQ Jd q= dt sec a 
-1/2 -d 

= 2Cgr[_!l2 [rid 1F=12 dte- 21m
!'J ID±12 

nccrr {riSCo, i) 12 + Is(o, i'WJ [1 _ -4 1m I'd] 
v JIL-1!2 1m r e 

S(o, i)S*(o, i') + S*(o, i)S(o, i') 
± Rer 

(3.97) 

Exploiting the symmetry of the scatterers with 
respect to the interfaces, i.e., 

gr[-1/2 [S(o, i')i 2 = gr[1/2 Is(o, i)12, 

gr[-1/2S(0, i)S*(o, i') = ;Jrr'/2S*(0, i)S(o, i'), 

and using (3.44) and (3.57), reduces (3.97) to 

Cgr[{IS(O, i) 12 [1 - e-4 
1m rdJ 

1m r 

S*(o, i)S(o, i') 2 I -m'd} ID 12 
± He r me = 

= [(1 - IQ12)[1 - e-41mrd] 

=t= 4 1m Q 1m ei2fd
] ID= 1

2
, 

which equals 1 - I<I>RI2 [obtained from (3.94)] as 
required. 
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This paper considers a class of scattering problems corresponding to a wave of propagation number 
K 1 exciting an object characterized by K 2, and giving rise to a scattered field of propagation number 
K 3. In addition, the boundary conditions on the wave functions and their normal derivatives at the 
object involve three sets of two parameters associated with the three propagation numbers. This 
generalized class of scattering problems can be treated by conventional analytical procedures (as for 
the usual problems K, = K a, etc.) to obtain series solutions for symmetrical shapes and Green's 
function representations for general shapes. The numerators of the new series coefficients differ from 
the usual ones, and the Green's function representation has an additional inhomogeneous term, i.e., a 
volume integral containing the source term in its kernel. These results are applied for special cases to 
obtain explicit approximations for the "two-external-space" scattering amplitude g(K 3, K I) (e.g., for 
small spheres with three sets of .'s and ,..'s, and for large tenuous scatterers). 

1. INTRODUCTION 

THE usual scattering problems of the reduced 
wave equations correspond to a wave of propa­

gation number Kl exciting an object characterized 
by K2 subject to boundary conditions on the object 
involving two sets of two parameters, and subject 
to radiation conditions at infinity. The class of 
problems we now consider is more general in that 
three sets of parameters are required. (Loosely 
speaking, we consider scattering problems in which 
the incident and scattered waves travel in different 
all pervading "exterior spaces" Kl and Ka.) Solutions 
and associated scattering amplitudes g(Ka, K ,) are 
derived by conventional analytical procedures. 
Elementary series and Green's function representa­
tions are given for one-, two-, and three-dimensional 
scalar problems, and for the three-dimensional 
electromagnetic case. 

Such "two-space" scatterers are of physical 
interest, for example, in analyzing multiple scat­
tering of waves by random distributions of scat­
terers. 1 In such problems, the ensemble averaged 
field at a scatterer fixed within the distribution may 
be approximated as the sum of the "effective field" 
plus the field radiated by the fixed scatterer: the 
effective field which excites the scatterer travels in 
the "synthetic medium" (say, K ,) associated with 
eoherent propagation, but the fixed scatterer is con­
strained to radiate into free space (say, Ka). 

* This work was partially supported by Signal Corps Con­
tract DA 36-039 SC-75012. 

1 The explicit results derived in the present paper are ap­
plied in detail in V. Twersky, J. Math. Phys. 3, 724 (1962), 
this issue. 

2. SCALAR PROBLEMS 

2.1. Statement of the Problem 

We seek a field which in the volume V bounded 
by S is specified by a function if; such that 

(\72 + K~)if; = 0, 

\7 2 = a;, a; + a;, a; + a; + a~. (1) 

External to V, the field is specified by two functions 
c/J and u which fulfill 

(2) 

On S, the functions and their normal derivatives 
are related by boundary conditions of the form 

Aip + u = A'if;j A = A I / A a, A' = A2/ A 3 • (3) 

B anip + u = B' anif;j B = B ,/B3 , B' = BdB3' 

The "interior field" ifi is to be nonsingularj for 
convenience, we use K2 = K' = kr{ The function 
1,0, the source term, is taken as the plane wave 

iK-r 
1,0 = e 1m K > OJ 

K = Ki = kTJi, r = roo 
(4) 

The remaining function u is specified as the scat­
tered wave by the Sommerfeld radiation condition 
at infinity (with respect to some interior point of 
V): 

(5) 
K3 k = [k[ = 21T/X, 

where n = 1, 2, 3 gives the dimensionality of the 

716 
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problem, and where we have assumed that the 
scatterer radiates into free space. (Although super­
fluous,2 an additional condition at infinity for 
n = 3, 2 obviates detailed manipulations with sur­
face integral forms; i.e., for r ~ <Xl, it is convenient 
to regard u bounded as r(n-O/2u < M n , where the 
M's are constants.) 

In the above, the wave function if;e- iwt corresponds 
to such physical fields as the velocity potential in 
acoustics, the probability amplitude in quantum­
mechanics, or the z component of E or H in one- or 
two-dimensional electromagnetics. The parameters 
A, B, K, are determined by the physical constants 
of the appropriate problem, and the boundary con­
ditions follow from the requirement that the phy­
sically observable fields or certain components, be 
continuous (e.g., velocity, pressure, tangential com­
ponents of E, etc.). In general, we regard the param­
eters having different subscripts as specifying three 
different physical media. Thus in acoustics An = Pn, 

Bn = 1, K! = W2
Pn/(lIn - iW~n), where p, 1', and ~ are, 

respectively, the density, compressibility, and the 
compressive viscosity. Similarly in one- and two­
dimensional electromagnetics, An = 1, BnE = I/J.ln, 
BnH = liEn, K! = W

2
J.1n(En + irrn/w) == W2J.1nEn, where 

the subscripts E and H correspond, respectively, to 
Ez = if; (TM case), and Hz = if; (TE case); here 
J.I, E, and rr are, respectively, the permeability, 
permittivity, and conductivity. Finally in scalar 
wave mechanics, if; is the probability amplitude, and 
An = Bn = 1. 

One view of the situation governed by Eqs. (1) to 
(5) is implicit in the last paragraph. We may 
visualize an object "made up" of K2 space excited 
by a field traveling in K 1 space, and scattering a wave 
which then travels in K3 space. The monopole form 
of this type of "schizoid scatterer" is implicit in 
the usual Green's function representation for the 
conventional field scattered by a homogeneous body 
for the case K\ = Ka = k, An = Bn = 1: When we 
write the usual scattered wave as a volume integral 
proportional to 

and interpret the kernel as the field of a monopole 
located at r' excited by the local field at r', we 
recognize that although the exciting field if;(K 2 ; r') 
travels in K2 space, the monopole scatters into k 
space. 

2 See discussion and references on p. 192 of A. ::-lommerfeld. 
Partial Differential Eqnations in Physics (Academic Press 
Inc., N. Y., 1949). 

In the following, we first obtain explicit solutions 
for elementary cases which may be treated by 
separating variables. Then we consider the Green's 
function representations for the general case. For 
simplicity we restrict discussion to the case where 
all parameters A, B, and K are constants. 

2.2. Elementary Illustrations 

The derivations in this section are conventional, 
but the explicit results for the scattering coefficients 
they lead to differ from those of the usual problem. 
The conventional steps are sketched in order to 
delineate where the differences arise. 

Plane slab : We consider the one-dimensional 
problem of a plane wave cp = eiK

% incident on a 
slab specified by K' and bounded by the planes 
x = ± a. The scattered wave u is to travel in k 
space, i.e., u ex: eiklxl. The internal field consists of 
terms proportional to eiK' x and e- iK' x

• Thus, in the 
three regions of space, the field is specified by 

x < -a: 

- a < x < a: 

x > a: (6) 

The unknowns are determined by the four equations 
obtained on applying the boundary conditions (3) 
at the two interfaces x = ±a, i.e., from 

Ae- iKa + S.eika = A'(l +e"'iK'a + 1 _e~iK'a), 

In terms of the "impedances" 

Z = KB/kA = K\AaBJ/K3AJBa, 

Z' = K'B'/kA' = K2AaB2/K3A2Ba, 

we solve (7) for the amplitudes 1+ and 1_ 
internal field: 

(.~A'/ A)J. = (1 + Z')(1 ± Z)e-i(K''''K)a 

- (1 - Z')(l =r= Z)ei(K''''K)a, 

(7) 

(8) 

of the 

.1 == (1 + Z,)2e-i2K'. - (1 - Z,)2ei2K'.. (9) 

Similarly, the back-scattered amplitude S_ (i.e., 
the reflection coefficient), and the'Jorward-scattercd 
amplitude S+ are given by 

(.1e ikal A)8. = e"'iKa(l ± Z)2Z' 

+ e"'i(K+2K')a(l =r=iZ')(Z - Z') 

- e"'i(K-2K')a(1 ± Z')(Z + Z') (10) 

which reduce to the standard form if K = k and 
Z = 1. The denominator .1 of J .. and S. (which 
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represents multiple reflection within the slab K') is 
the same as for the standard problem; however, the 
numerators are significantly different. For a perfect 
reflector, such that A'if; = 0 at x = -a, we have 
Z' ~ co, and (10) reduces to S_ = _Ae-dK+kla; 

similarly, for B' anif; = 0, we have Z' ~ 0 and (9) 
reduces to S_ = (KB/k)e-i(K+kla. 

The above results for normal incidence may be 
directly extended to an arbitrary angle of incidence 
81 (measured from the surface normal) by replac­
ing K! by K! cos2 8n , and multiplying all wave func­
tions by eiK,YSinO" such that 

K, sin 8, = K2 sin 8" = K3 sin 83 • (11) 

Equation (11) is a generalization of the usual "laws" 
of specular reflection, transmission, and refraction. 
In the present case both the reflected and forward 
scattered directions (although still images of each 
other in the slab face) are "broken" with respect to 
the direction of incidence, i.e., we hnve sin 11., = 
(K,/K3) sin e" so that the refiecfpJ and incident 
directions are not images in the slab normal (not 
even for a perfect reflector). Similarly the internal 
field is refracted both with respect to the direction 
of incidence, and the directions of scattering; thus 

The circular cylinder: For the circular cylinder of 
radius a, proceeding essentially as above, we expand 
the wave functions in cylindrical coordinates around 
the cylinder's axis: 

ro 

<p(K) = C
iKx = L in J n(Kr)cin9 , 

n=-C? 

u(k) = L inCJi,,(kr)e in9
, 

if;(K') = Lin DJn(K'r)einO . (12) 

The nonsingular internal and source waves involve 
Bessel functions I n , the scattered wave involves 
Hankel functions of the first kind Hn = H,;'l to 
satisfy the radiation condition, and n is an integer 
in these Fourier-Bessel series because the field must 
be single valued in 8. 

Applying the boundary conditions (3) at I" = a, 
and using the orthogonality property of the exponen­
tial to equate the coefficients (:)f the resultant 
Fourier series individually to zero, we obtain 

AJn(Ka) + CnH"Cka) = A' D"J,,(K'a) , 

BKJ~(Ka) + kCnH~(ka) = B'K'J~(K'a), (13) 

where the prime on the cylindrical functions repre­
sents differentiation with respect to argument. Thus, 

Dn = A[Jn(Ka)H~(ka) - ZJ~(Ka)Hn(ka)]/ A' .1", 

.1n == In(K'a)H~(ka) - Z' J~(K'a)Hn(ka); (14) 

Cn = A[Z' In(Ka)J~(K'a) - ZJ~(Ka)Jn(K'a)J/ .1", 

where the Z's are defined in (8). As for the slab, 
only the denominators are the same as for the stand­
ard problem. 

If A'if; = 0 at r = a, then (14) reduces to 

Cn = -AJn(Ka)/Hn(ka); (15) 

in particular, for the electromagnetic case if; = E, 
and a perfect conductor, we have A = 1. Similarly 
if B'anif; = 0 at r = a, then 

Cn = -AZJ~(Ka)/H:'(ka), AZ = KB/k = TlB; (16) 

for if; = H, and a perfeetor conductor, we have 
AZ = TI/E = fJ./TI. 

If a--> 0 in the above, then for a dielectric such 
that fJ.2/ fJ.3 = fJ.' = 1, we have for if; = En 

Co ~ ti7r(I(za)2(1 - fl/f2) = h7r(ka)2(e' - e), 

(17) 

Similarly, for if; = H" 

C ,-.., 1· K K 2 e;.(e2 - f,) = i7r(lca?TI (e' - E) 
I ,-.., 4~7r I 3

a 
f, (e, + e2) 4e / + 1 ' 

(18) 

On the other hand, for a perfect conductor and 
if; = E. we obtain 

C ,-.., _ 1 - (Ka/2)2 
o ,-.., 1 - (ka/2)2 - i(2/7r) In (2/rka) , 

'Y~1.781; 
. ( )2n 

Cn ~ - (~~2 (Kk)" ~ , (19) 

whose leading term Co ~ - i7r/2 In (2hka) is the 
leading term for the standard problem. Similarly for 

if; = H" 

c "-' i7rn(Kk)" (~)2" (20) 
n "-' (n !/ E 2 

The sphere: For the sphere, we have 
00 

<t> = eiK, = L i"(2n + l)j"CKr)P,,(cos 8), 
n=O 

u = L i"(2n + l)cnh,,(kr)P,,(cos 8) J 

if; = L i"(2n + 1) dnj,,(J<:'r)P,,(cos 8), (21) 

where j and h = h (I) are the usual spherical func-
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tions,2 and the P's are the Legendre polynomials. 
Proceeding as previously, leads to (14) with D, C, J, 
and H replaced by their lower case analogs. 

2.30 Green's Function Representation 

For an arbitrary shaped scatterer, Green's 
theorem applied to u and to the free space Green's 
function in the region outside the scatterer yields the 
conventional surface integral representation for u. 
However, the corresponding representation for u as 
an integral over the volume of the scatterer is 
significantly different. In order to introduce notation, 
and to facilitate derivation of the volume integral 
representation we begin by sketching the standard 
procedure for obtaining the surface integral form. 

Thus, applying Gauss' theorem 

1FodS=1VoFdV (22) 

to F = S V u, uVS, and subtracting the results, we 
obtain Green's theorem 

1 (SVu - uVS) on dS = 1 (s anu - u ans) dS 

= J (S\72u - u\72 S) dV, (23) 

where n is the normal out of V. We take S to satisfy 

(\7 2 + e) S( Ir - r'l) = oCr - r'), (24) 

where 0 is the appropriate Dirac 0 function. In one, 
two, and three dimensions, respectively, we have 

eikR hcill (kR) 
- 4'Jr-R = 47ri/k ' 

R = Ir - r'l· (25) 

Using \7 2u = -k2u, and (24) in the volume inte­
gral in (23) for the region external to the scatterer 
gives - u(r); then using the conditions at infinity 
for Sand u to eliminate the surface integral at 
infinity we write 

u(kr) = J [S(k Ir - r'D anu(kr') 

- u(kr') an S(k Ir - r' I)] as(r') , (26) 

where the integral is over any surface which incloses 

u = J [S(B' anif; - Ban</» - (A'1jt - A</» onS] dS 

J [SIjt(A'e-B'K,2)+(B' -A')VS' Vif;] dV 

- J [S</>(Ae-BK
2
)+(B-A)VS·V</>] dV, (27) 

where we used the fact that (\7 2 + K2)1jt = 0 
inside the scatterer, and that (\72 + K2)rp =0 
everywhere in space. The present u differs from that 
of the conventional problem in containing the 
additional volume integral involving rp (which is of 
the form of a "modified Born approximation" for 
an ordinary scatterer with parameters A, B, K 
embedded in free space). However, the present form 
lends itself as readily for obtaining integral equations 
for the surface fields and derivatives, or for con­
structing approximations. 

If all boundary coefficients equal unity, then (27) 
gives the integral equation 

if; = rp - J w - K2) Srp d V 

+ J W - K,2)SIjt dV (28) 

which differs from the form of the conventional 
result in that the inhomogeneous term contains the 
integral involving </> as an additional component. 

For one- and two-dimensional electromagnetics, 
for if; = E z , (27) reduces to 

u = J [Sljtk2 (1 - €') - (1 - l/IL')VS·VIjt] dV 

- J [Srpe(1 - €) - (1 - l/IL)VS' Vrp] dV. (29) 

Similarly for if; = Hz, we obtain (28) with the 
IL'S and €'S interchanged. 

If klr - r'l » 1, r» r', then 

S(k Ir - r'i) ,...., cX(kr)e-ikOor'; 

'1r> _ iklxl 
oJ\.., = e , 

c = 1/i2k, 1/i4, kji47r, 

and (26) reduces to 

eikr /ikr; 

(30) 

the scatterer and excludes the observation point r, u,...., X (kr) g(ko, Ki) , 
and where the normal points out of the scatterero 

Using the boundary conditions (3), and then g(ko, Ki) == c J [e-ikOor' onu - u ane-ikOOr'] dS, (31) 
using (22), we rewrite u of (26) as a volume integral. 
Thus, where g is the corresponding "two-exterior" scat· 
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tering amplitude.2
& Essentially as for u, we have cos e = roz/rz = OoZl, 

O=c Je-ikOor'[(A'k2-B'K,2)y,,-ik(B'-A')ooVy,,]dV II = J eiX'c.,-•• )+iX .. -ikoor' dV, 

Corresponding to the symmetrical one-, two-, and 
three-dimensional cases of Sec. 2.2, the scattering 
amplitudes are given by 

m 

03 = L CnC2n + l)Pn(cos e), 
n-O 

where 02 is obtained directly by using H" (x) ,-v 

i-"eb
-
ir

/
4(2/7rx)I/2 in u of (12) to obtain :Je2Y2, 

and 03 by using hn(x) ,-v i-"eiz/ix in u of (21) to 
obtain :JeS03 • 

Illustration : We apply (32) to consider scattering of 
an incident wave cp = eiX• by "tenuous scatterers" 
(K ~ K' ~ k) large compared to wavelength. Our 
approximation procedure is essentially that used for 
ordinary scatterer problems by Montroll and Green­
berg,3 Saxon,4 van de Hulst,5 and others: We neglect 
refraction and reflection effects and approximate the 
internal field y,,(r') by visualizing cp arriving as a 
straight ray modified only by a change in exponent 
corresponding to the thickness of the scatterer it 
traversed in reaching r', i.e., we use the leading term 
of the WKB approximation with the slowly varying 
amplitude factor replaced by unity. Thus we approxi­
mate the internal field in (32) by 

(34) 

where M' is obtained by replacing A, B, and K of M 
by primed quantities. In particular, in the forward 
direction (0 = Zl), we have 

II = J e-iCK'-K) •• +iCK'-k)., dV, 

(35) 

The integral 12 of (34) has the form of a "modi­
fied Born approximation". In particular, for the 
the sphere, we obtain 4 

I - 4 3 jl(X) _ 4 3[sin x cos x] 
2 - 7ra -- - 7ra -3- - -2-

X X x' 

x [ eJm a = IKzl - kol = (K - k)2 + 4kK sin2 2 ' (36) 

which reduces to 47ra3/3 in the forward direction. 
The corresponding forward scattered value of I I may 
be obtained directly. Thus for a sphere, the arrival 
point (zo) and "departure point" (ZI) of a ray are 
given by Zo = -ZI = (a2 

- /)1/2, where a is the 
radius, and p2 = x2 + y2. Using 

J d V = { p dp [" dcp L:, dz' 

(33) in (35), we integrate to obtain the forward scattered 

where zo(x',y') is the impact point on the surface for value 
the ray reaching r', and where z' - Zo is the path 2 [( 1 ) 1 J" 
length within the scatterer. II = i(K' ~ k) eian ~q + q2 - C/. "~, 

Using (33) in the three-dimensional form of 
(32) (i.e., c = k/i47r) , we obtain 

g(O) = M'I1 - MI!t, 

M = (ik/47r)[(A - B)kK cos e - Ae + BK2] , 
2& Note added in proof. We may also express g as an integral 

over the surface of the scatterer in terms of the solution 
for the corresponding conventional problem. Thus g(k, 
K) = c J (A,., ony, - y,B On"') dS, where,., = exp(iKor), and 
where y, = exp( -~"kor) + U is the solution of the con­
ventional scattering problem for the same object (K', A', B') 
excited by exp( -~"kor). Volume integral representations may 
be obtained as above. 

3 E. W. Montroll and J. M. Greenberg, in Wave Motion 
and Vibration Theory, edited by A. E. Heins (McGraw-Hill 
Book Company, Inc., New York, 1954), pp. 103-127. 

4 D. D. Saxon, "Lectures on Scattering of Light," Scientific 
Report No.9, Dept. of Meteorology, U.C.L.A. (1955) (un­
published). 

Ii H. C. van de Hulst, Light Scattering by Small Particles 
(John Wiley and Sons, Inc., New York, 1957), p. 174 ff. 

q2 = 2K' - K - k, q1 == k - K, (37) 

which is of the form !(q2) - !(q1)' Similarly, for the 
back-scattered direction, we replace k by -k in (37). 
For arbitrary e, we may construct series representa­
tions for II by proceeding essentially as in references 
3-5. If (K K')zo is neglected in the exponent of 
(34), then 

(38) 

For arbitrary shaped scatterers we may expand 
the exponentials in II and 12 of (35) and obtain 
representations in terms of the volume moments of 
the original shape (say, 8), and an auxiliary shape 
(say, 8 0 ) generated by translating the volume 
elements of 8 parallel to the direction of incidence 
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(ZI) to yield a flat face at z = 0. In particular, if 
K - k ~ ° and K' - k ~ 0, then 

12 ~ V + i(K - k) {' z' dV 

== V[l + i(K - k)£'] , 

II ~ V + i(K' - K) {' (z' - zo) dV 

+ i(K - k) t' z' dV 

== V[l + i(K' - K)L + i(K - k)£'] , (39) 

where V is the volume of the scatterer. For con­
creteness, we visualize the origin of coordinates as 
the center of the longest line through the scatterer 
drawn parallel to the direction of incidence. The 
constant L' is thus the distance of the centroid of 
the scatterer from the "midplane" z = 0, and con­
sequently vanishes for shapes (S) symmetrical to 
the midplane. Similarly, the other constant 

1 f" L = V '. (z' - zo) dV(x, y, z) 
1 [,.+1,.1 

= V 10 t dV(x, y, z) (40) 

is the distance of the centroid of the auxiliary shape 
Sa from its flat surface facing the direction of 
incidence. Thus we may write 

L = [J tAW dtJ/ J AW dt, 

AW = JJ dx dy, (41) 

where A (t) is the area of a cut of Sa perpendicular 
to z. As an example, consider that S is an ellipsoid 
with semiaxes c, b, a along x, y, z (so that L' = 0). 
For this case A(t) = 1I'cb(1 - t 2Ia2

), and the 
distance of the centroid of the distorted ellipsoid 
Sa is given by 

L = fa t(a2 - t 2) dt / fa (a2 - t 2) dt = 3a14. 

(42) 

3. THREE-DIMENSIONAL ELECTROMAGNETICS 

3.1. Statement of the Problem 

For three-dimensional electromagnetic problems, 
we replace the previous scalar functions 1/;, cp, and u 
by vector analogs representing either E or H fields. 
Thus the field inside the scatterer's volume V is 
given by 

VxVxt\! - K,2t\! = 0, V·t\! = 0, (43) 

and external to V we use 

V x V x'GI - K2'G1 = 0, V''GI = 0, 

V·u = O. (44) 

The boundary conditions at the scatterer's surface 
are 

n x ('GI + u) = n x t\!; 

n x (BV x'GI + V xu) = n x (B'V x t\!) (45) 

where B = II p. for E fields, and B = II E for H fields, 
etc. The source is taken as 

(46) 

and the scattered wave fulfills Silver's radiation 
condition 

lim reo x (V xu) + iku] = 0, o = rlr. (47) 
r_'" 

From (47), it follows that for r -t CXl we have 
asymptotically 

u rv ge,krlikr = g(ko, K)ho(kr), (48) 

where the vector scattering amplitude is independent 
of r. Since V·u = 0, we also have V·u ,......, iko·u = 
o.ge,kr Ir = 0, and consequently g is perpendi­
cular to the direction of scattering. Similarly 
o x (V xu) ,....., - iku. 

If 'GI represents an E field, say Ei = 'GI = xie,K., 
then from Maxwell's equations V xE - iwp.H = 
V xH + iWEE = 0, it follows that Hi = e,K'YI TJdp.l, 
y I = Y I y . Similarly, the corresponding scattered 
waves normalized for E, = xle,K. are E. = u ,....., g.ho 
and H. ,....., g:ho such that g: = 0 xg.(TJ3/p.3)1/2. How­
ever, if we take 'GI = yle,K. = Hi, then the corre­
sponding normalized amplitude of H. rv gmho is 
related to the others by 

gm = g:p.I/TJI = 0 xg.p.ITJ3/TJI/la = 0 xg./ll.". 

3.2. The Sphere 

For 'GI = Ei = x\e,K" we use the vector Mie 
formalism as in Stratton6 to treat the sphere by 
separation of variables. Exploiting his development 
(pp. 564 and 565), we introduce a third set of 
parameters in his form for E. = 'GI and write the 
corresponding form Hi= V X'GI/iwp.. Thus we obtain 

u = E. = L: f'(2n + I)[Cnm~~! - C~n~~!] (49) 

where the functions m (3) and n (3) are given on 
p. 564 of Stratton, and where the scattering coeffi­
cients Cn and C' .. are given by 

e J. A. Stratton, Electromagnetic Theory (McGraw-Hill 
Book Company, Inc., New York, 1941). 
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jn(Ka)[K'ajn(K'a)]'!p.' - jn(K'a)[Kajn(Ka)]'/p. _ C ( ') 
hn(ka)[K'ajn(K'a)]/p.' - jn(K'a)[kahn(ka)]' - n p., fJ. , 

(50) 

in terms of the usual spherical Bessel and Hankel 
functions of the first kind; the primes on the brackets 
indicate differentiation with respect to Ka, etc. 
The corresponding scattering amplitude, as defined 
through E, ,......, gho equals 

'" 2n + 1 [c ( p! ap~.) 
g = £::t n(n + 1) n sin e cos \06, - ao sm \O~1 

+ Cff(ap~ P~.)] 
n ao cos \06, - sin esm ~1 , (51) 

where P! = P! (cos e) is the associated Legendre 
function; 6, and~1 indicate unit vectors. [Only in (51) 
and (52) is the symbol \0 used for the azimuthal 
angle; elsewhere, it represents the source.] If a ~ 0, 
then to order a6

, we have 

C
' _ i2(ka)3(e' - e) {I + K 2

(2e' - e)(2 + e') + 5e(e' - 2)(e - e') - K,2e'(e + 2) 2 + i2 (k )3 e' - I} 
,- 3(/ + 2) lO(e - e')(2 + e') a 3 a e' + 2 ' 

The corresponding results for a perfect conductor 
(nxE=OonS)are 

en = -jn(Ka)/hn(ka) , 

(52) 

r( ') = r(' ) = [I _ 'IV'] kho(k Ir - r'j) r, r r , r e 47Ti' 

V x V x r - er = - I oCr - r') (55) 

C~ = - [Kajn(Ka)]' /[kahn(ka)]' 7] (53) with 1 as the unit dyadic. Thus, analogous to (23): 

C, = - i7](ka)3 [1 _ (ka)2 (5 + 7]2) _ i(ka)3] 
3 10 3 ' 

C 
__ i7](ka) 5 

2 - 45' 
(54) 

Ci = i2(~a)3 [1 + (;~2 (5 - 27]2) + i: (ka) 3 J, 
C' _ i7](ka)

5 
• 

2 - 30 

3.3. Green's Function Formalism 

We proceed essentially as in Sec. 2.3. We apply 
Gauss' theorem (21) to the vectors (r·e) x (V xu) 
and u x (V x r·e), where e is an arbitrary con­
stant vector, and r is the free space dyadic Green's 
function 

f [r·ex(Vxu) - ux(Vxr·e)]·ndS 

= -/ {(r·e)·Vx(Vxu) 

- u·[V xCV xr.e)]} dV. (56) 

Using the wave equation (44) for u and (55) for 
r, we apply (56) in the region external to the scat­
terer and obtain the analog of (26): 

u·e = / [(r·e) xCV xu) - u X (V xr·e)]·n dS. 

(57) 

where e may be dropped for brevity. 

The volume integral representation for u of (57) 
follows from the boundary conditions (45), some 
elementary vector algebra, and Gauss' theorem. 
Thus 

.u = / {r x [V x (B'~ - B~)] - (~ - ~) x (V x r)} ·dS 

= / [~. rce - B'K,2) + (B' - 1)('1 x~) .('1 x r)] dV 

- / [~. rW - BK2) + (B - 1)('1 x~)·(V x r)] dV. (58) 
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The conventional scattering problem (B = 1, K = k) 
does not contain the integral involving ~; for the 
conventional problem involving E fields with B' 
1/ J.I.' = 1, (58) reduces to the result discussed in 
detail by Saxon. 4 

If k Ir - r'l » 1, r» r', then 

r(r, r') "-' (I - oo)ho(kr)e-ikO.re, e = k/i471" (59) 

a = YI xo, (62) 

where M' has the same form as M in terms of the 
primed parameters, and where I, and 12 were con­
sidered in (34) ff. If we take ~ = E;, then B = 1/ J.I. 
and B' = 1/ J.I.'. In particular if ,./ = 1, and J.I. = 7J = 
K/k (a case of particular interest for reference 1), 
we obtain 

Consequently (58) reduces to u"-'ho(kr)g, where, e.g., g = (ik/471")[(K,2-k
2
)bI I - k(K-k)(a+b)I2], (63) 

g(ko, K) = (I - 00)) [(nxu) xVe- iko .r ' 

- e-iko.r'(V xu) xn] dS, g·o = 0, (60) 

which may be recast in different form by using vector 
algebra. Similarly, corresponding to (58), 

g = e(I - 00)' J e-iko.r'[W - B'K,2)tIf, 

+ (B' - l)iko xCV xtlf,)] dV 

where, since K'~k, we may use K'2_k2~2k(K' -k). 
In the forward direction (a = b = XI), for 

arbitrary tenuous scatterers we have 

g·x = g = (ieV/271")(K' - K) 

X [1 + i(K' - k)L + u(K - k)L'] (64) 

where Land L' are as in (39) ff. For a sphere, (64) 
reduces to 

g = i2k2a3(K' - K)[l + i(K' - k)3a/4]/3. (65) 

- e(I - 00)' [W - BK2)XI 

+ kK(B - 1)0 x (ZI XXI)] J ei(Ki-kO)'r' dV, 

For other than the forward direction, to lowest order 
in K' - k and K - k, we use (36) and (38) and 

(61) approximate (62) by 

which is the vector analog of (32). 
Illustration: We apply (62) to the analogous 

illustration considered for the scalar problem, i.e., 
to large tenuous scatterers. Thus for an incident 
wave ~ = xleiKz

, we multiply (33) by XI and 
substitute in (61) to obtain 

g(8) = M'II - MI2 , 

M = (ik/471")[(1 - B)kKa - (k2 - BK2)b], 

g ~ (iea3 /3)J(8)[2(K' - k)b - (K - k)(a + b)], 

J(8) = 3jl(2ka sin !8)/2ka sin !8. (66) 

In the plane perpendicular to the incident polari­
zation, we have b = XI and a = XI cos 8; thus 

g(8)=xl (i2k2a3/3)J(O)[K'-k-(K-k) cos2 !O]. (67) 

The results of this section are exploited in detail 
elsewhere l to treat multiple scattering of waves by 
random distributions of conventional scatterers. 
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On Scattering of Waves by Random Distributions. 
II. Two-Space Scatterer Formalism* 

VICTOR TWERSKY 

Sylvania Electronic Defense Laboratories, Mountain Vf'ew, California 
(Received December 22, 1960) 

The bulk parameters (propagation number K, etc.) of the coherent mUltiple scattered field in a slab 
region of randomly distributed scatterers are expressed functionally in terms of "two-space" isolated 
scatterer amplitudes. These amplitudes correspond to a single object excited by a wave traveling in 
"K space" (the medium associated with the coherent field) but radiating into "k space" (free space). 
The formalism is applied to small spheres of arbitrary E' and JL', and the "Lorentz-Lorenz" form 
for each bulk parameter E and JL is obtained. It is shown that E and JL are independent of the direction 
and of the polarization of the incident field; thus, the coherent field for the distribution defines a 
unique Maxwellian medium. As a second approximation for small spheres, the "loss terms" cor­
responding to incoherent scattering are included; these appear in the bulk E and JL in the roles of 
electric and magnetic "conductivities.' As another illustration, we consider normal incidence on a slab 
of tenuous scatterers (parameters close to those of free space) large compared to wavelength; for this 
case the bulk parameters E and JL are equal to the index of refraction. We consider the incoherent 
as well as the coherent effects. 

1. INTRODUCTION AND STATEMENT 
OF THE PROBLEM 

I N. a previous paperl we considered a plane wave 
e,k'r incident at an arbitrary angle on a uni­

formly random distribution of arbitrary scatterers 
in a region bounded by two parallel planes. (We 
refer to this paper l as I and cite its equations as 
(n. m) to indicate the m'th equation of Sec. n, i.e., 
just as they are numbered in I.) In Sec. I.2, starting 
with the ensemble average of the Green's function 
surface integral representation for the field scattered 
by a configuration, we introduced approximations 
in order to express the average coherent field in 
terms of an integral over the slab region (0 :::; z :::; d). 
Thus, corresponding to the geometry of Fig. 1.1, 
we obtained (2.26) of I: 

('l') = eik
'{ 1 + C f e-i'YtG(r; k) drJ 

+ eik"rC t ei'"{zG(r; k') dr, 
k·r = kz cos a + kx sin a = "(Z + kzx, 

(1) 

k'·r = -"(Z + k"x, 

Ca = 27rPa/e cos a, 

where k and k' are images in the slab face z = 0, 
and where the one-particle density function Pn is 
the number of scatterers divided by the available 
volume in one, two, or three dimensions. The 

* This work was {lartially supported by Signal Corps 
Contract DA 36-039 SC 78281. 

1 V. Twersky, J. Math. Phys. 3, 700 (1962), this issue. 

function G, the "average multiple scattering ampli­
tude" of a scatterer fixed at r, = z, within the 
distribution, was defined by (2.23): 

G(z.; ko) = (G(z.; ko». 

- { -ik.·r' (,T,( + '» I = e ,,,, z. r., ko = ko, (2) 

where 0 is a unit vector in the direction of observa­
tion, ('l'), is the average field at a fixed scatterer, 
and where the operational braces represent the 
usual Green's formula surface integral, e.g., in three 
dimensions, {x, y} = (k/i47r) f (x anY - Y anx) dA. 
(In distinction to I, we now use ko = ko instead of 
merely 0 in the argument of G, etc.) The statement 
of the problem was completed by the approximation 
for the average field at a fixed scatterer (2.28): 

('l'). ~ ('l') + (u(r - r.»., 

(u(r - z.»,......, :re(k Ir - z.1) G(z,;ko)' (3) 

where :re(x) = eiJzJ
, (2/i7rx)l/2e iz, ei"/ix in one, two, 

or three dimensions. Equation (3) has the form of 
the solution for an isolated scatterer excited by a 
set of plane waves and radiating into free space. In 
the limit P -? 0 [i.e., C -? 0 in (1)], we have ('l') -? e,k'r 

and (u). -? v(k Ir - r./)eik' r
, where v is the presum­

ably known solution for the single-body scattering 
problem; for large k Ir - ral, we have v ro.J JCg(ko, k) 
where g(ko, k) is essentially the conventional 
scattering amplitude for an isolated object excited 
by a plane wave traveling along k. 

In Sec. 1.3, we obtained explicit results by 
interpreting ('l') of (1) as a set of free-space plane 
waves e,k'ra(O, z) + e'k' 'ra' (z, d) representing a 

724 



                                                                                                                                    

ON seA T T E R I N G 0 F W A V E S BY RAN DO M DIS T RIB UTI 0 N S. II. 725 

multiple scattering process in free k space (i.e., at 
the "microscopic level" (1) indicates that the field 
at z consists of the source term eik

•
r plus the free­

space forward-scattered fields of the planes of 
scatterers in 0 < f < z, plus the free-space reflected 
field of the planes z < .\ < d). The corresponding 
average scattering amplitude G of (u)., i.e., 

G(fi k o) = g(ko, k)a(O, z)ehZ 

+ g(ko, k')a'(z, d)e-' Y
', 

was substituted in (1) and the resulting integral 
equations solved to obtain the form 

('It) = AeiK.r + A'eiK '. r
, 

K·r = rz + kxx, K'·r = r'z + kxx, (4) 

where A and A' are independent of z, and where 
K and K' are the "macroscopic" propagation vectors 
of the medium associated with the average coherent 
field. Section 1.3 obtained A, K etc., explicitly in 
terms of the known functions of known parameters 
g(ko, k) and g(ko, k') i the results were generalizations 
of existing results derived elsewhere by different 
methods for monopoles, dipoles, small scatterers, 
circular cylinders, and spheres. It was pointed out 
that the procedure was not fully "self-consistent" 
(the microscopic field traveled in "k space" but the 
macroscopic internal field traveled in "K space"), 
and that these approximations (obtained by essen­
tially perturbing around the characteristics of free 
space) were not appropriate for dense distributions. 

Although several formalisms exist for extending 
such perturbation procedures to dense distributions 
(analytical "hole" corrections, etc., as mentioned 
in I), it is believed that a more rapidly convergent 
development may be obtained in terms of a more 
appropriate isolated scattering amplitude than the 
conventional g(ko, k). In particular, the form (4) 
substituted into (3) indicates that a fully self­
consistent procedure may be based on a new kind 
of isolated scatterer problem: The scattered wave 
must travel in k space [as seen from the asymp­
totic form of (u). in (3)] whereas the excitation 
must travel in K space [as seen from the form of 
('It) of (4)]. In general, such scattering problems 
involve three wave equations (one for the interior 
of the scatterer, and two for its "two exteriors"), 
and three sets of physical parameters (e.g., f'S and 
/L's) associated with the three "media". Suppressing 
the space in the scatterer's interior for simplicity, 
we denote the corresponding "two-space" scattering 
amplitudes by g(ko, K). 

Thus the "average scatterer" in (3) is now 
regarded as excited by the two plane waves of (4) 

traveling in K space, but still radiating into k space 
as required by the asymptotic form of (u).. By 
superposition, the corresponding multiple scattered 
amplitude is consequently 

G(f:ko) = g(ko, K)Ae
ifz + g(ko, K')A'e

if
',. (5) 

The generalized single-body scattering problem 
which yields g(ko, K) as the scattering amplitude 
has been treated elsewhere.2 Thus we assume in the 
present development that the forms of the two-space 
single-scattering amplitudes required in (5) are 
known. Equations (1), (4), and (5) define the present 
treatment of the problem of the coherent field in 
random distributions. 

2. THE AVERAGE WAVE FUNCTION 

Substituting (4) and (5) into (1), and introducing 

S = Cg(k, K), S' = Cg(k', K'), 

R = Cg(k', K), 

we obtain 

Aeir • + A'eir ', 

R' = Cg(k, K'), 

= eh { 1 + f e-iyr(ASeirr + A'R'eir
'
r) dfJ 

(6) 

+ e- iyz f.d ehr(AReirr + A'S'eir 'r) df. (7) 

Integrating over f, and equating the coefficients 
of eir',eir",ei'Y z

, and e-hz to zero gives, respectively, 

1 = S 
i(r - 1') 

R 
i(r + 1') , 

R' S' 
1 = i(r' - 1') - i(r' + 1') (8) 

AS A'R' 
1 = i(r - 1') + i(r' - 1') , 

ARe
ifd 

A'S'eir 'd 

i(r + 1') + i(r' + 1') = o. (9) 

Equation (8) specifies the propagation coefficients. 
Equation (9) gives the boundary conditions on the 
coherent field at z = 0 and z = d. (The first con­
dition "extinguishes" the incident wave eik

•
r within 

the slab region, and the second "extinguishes" the 
internal free-space reflected wave.) 

Solving (9) for A and A.', and using (8) to simplify 
the results, we obtain 

A = (1 - Q)[1 - QQ'ei(r-r')dr1 == (1 - Q) D, 

A' = (1 - Q')Qei(r-r')d D 

Q == (r - 'Y)Rj(r + 'Y)S, 

Q' == (r' + 'Y)R' j(r' - 'Y)S'. 

(10) 

2 V. Twersky, J. Math. Phys. 3, 716 (1962), this issue. 
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Substituting these values in (4) yields the internal 
field '1'1' Similarly these values together with (1) 
and (5), yield the reflected field 

'1'R = eik'or ld ehrG(!;; k') d~ 

in the range z < 0, and the transmitted field 

'1'T = eikO{ 1 + C { e-hrG(~; k) d~ ] 

for z > d. In terms of the present r's and Q's, the 
forms of the coherent field in the three regions are 
identical with those given previously in (3.14), and 
fulfill the previous average boundary conditions 
(3.25) and (3.26). 

The corresponding multiple scattering amplitude 
obtained from (1) and (5) equals 

G(~; ko) = (1 - Q)g(ko, K)eir , D 

+ Q(1 - Q')g(ko, K')eir'z+i(r-r'ld D, (11) 

which has the form (3.39) in terms of 

g(ko, K) = (1 - Q)g(ko, K), 

g(ko, K') = (1 - Q') g(ko, K'). (12) 

The present forms for the coherent field and 
amplitude are identical to those obtained in Sec. 
1.3, and consequently much of the previous dis­
cussion is applicable. The results differ in that the 
Q's and r's are now differently expressed in terms 
of an isolated scattering amplitude, and that the 
amplitude g(ko, K) corresponds to a new kind of 
single scatterer. In order to specify the new scatterer 
we require in addition to the relation reg) a relation 
between g and one of the macroscopic parameters 
of the medium we have synthesized. The required 
parameters are implicit in the boundary conditions 
of the coherent field (3.25) and (3.26). 

For simplicity we restrict detailed consideration 
to scatterers which are essentially symmetrical with 
respect to the slab face z = 0. Such scatterers 
fulfill the symmetry relations 

antisymmetric and symmetric components of g with 
respect to reflection of one direction in the plane of 
symmetry. The corresponding Q's of (10) are given 
by 

Q = Q' = (r - 'Y)R/(r + 'Y)S 

= (r - 'Y)g' /(r + 'Y)g. (15) 

For this case, the coherent field has the elementary 
form for a uniform isotropic slab 

D = [1 - Q2ei2fdrl, 
'1'R = -Q(1 - ei2fd) Deik'or = CReik'or, 

and satisfies simple boundary conditions at z 
and d: 

'YZ 
'1'ou, = '1';n; dz'1'out = B dz'1';n = r dz'1';n; 

iZ = i 1 + Q = _S_ + _R_. 
l-Q r-'Y r+'Y 

(16) 

0, 

(17) 

The corresponding multiple scattered amplitude is 

G(~; ko) 

(1 -Q)[eirZg(ko, K)+Qe ir (2d- z l g(ko, K')] 

1 - Q2e
i2fd 

From (14) and (17), we obtain 

Equivalently in terms of rand B, we have 

(18) 

(19) 

B = 1 _ ~g- B~2 = B'T/
2 
C~S2 (3 = 1 + C.g+ (20) 

l.r ' I' cos a 1.'Y ' 

where 'T/ and (3 (such that 'T/ sin (3 = sin a) are the 
complex index and angle of refraction, respectively. 
Thus 

Bn2 = B sin2 a + B'T/2 cos2 
{3 

= 1 - Cg_ sin2 a/ir + Cg+ cos2 aliI'. (21) 

An alternative expression for 'T/
2 than that obtained 

from (20) and (21) follows directly from (14): S = S', 

R = R', 

g(k, K) = g(k', K') == g; 

g(k', K) = g(k, K') == g'. (13) 'T/
2 = (r2 + e sin2 a)/e 

Consequently (8) reduces to 

~ = S/(r - 'Y) - R/(r + 'Y); 

i(r2 
- 'Y2) = res - R) + 'Y(S + R) 

== c(rg_ + 'Yg+) , (14) 

(22) 

In particular, for the electromagnetic case, we 
have 

2 
'T/ = €J..I., (23) 

where g_ = g - g' and g+ = g + g' are twice the where € and J..I. are the relative permeability and 
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permittivity. More explicitly, if the incident H field 
is normal to the plane of incidence (y = 0), then 

E = l/B, I'- = Br/; Hi = (y/y)e
ik

•
r == ecp. (24) 

Similarly if the incident E field is normal to the 
plane of incidence, then 

I'- = l/B, Ei = ecp. (25) 

For the three-dimensional electromagnetic case we 
require 

g(k, K) = g(k, K)e, g(k', K) = g(k', K)e (26) 

in order for the present scalar formalism to apply. 
Specializing the above to the three-dimensional 

case, and introducing the more conventional form 
f = g/ik [with f = e·f(k, K), l' = e·f(k', K») we 
obtain for Hi = ecp, 

-] 
E 

J.I = 

1 - 27!'P9_ = 1 _ 27!'p(f - 1') 
ik')' r kK cos {3 cos a ' 

1 + 27!'p (11..+ .. _ g- sin
2 a) 

ik e ')'r 

1 + 271' [1 +2 l' _ (f - f') sin
2 a] . 

P k kK COS {3 COS a 
(27) 

Similarly for E. = ecp we interchange E and J.I. For 
normal incidence (a = (3 = 0) (27) simplifies to 

E-
1 1 - 27!'p(f - f')/1]e, 

I'- = 1 + 27!'p(f + f')/e. (28) 

[The present I'- has the previous form (3.32), and 
for small f, the sum of the first two terms of the 
expansion of the present E is of the form (3.32).) 

The above forms simplify for limiting cases; we 
illustrate this in three dimensions. Thus if the 
scatterers are simple monopoles f = f', Eqs. (14), 
(17), and (23) reduce to 

r 2 = ')'2 + 47!'pj, Z = r/y, 
1]2 = 1 + 47!'p,;e; (29) 

the form for 1]2 is identical with that obtained by 
Foldy.a On the other hand, for simple dipoles 
f = -f', we obtain 

r2 = ')'2 + 47!'prf/Y, Z = ,),/r, 
1]2 = 1 + 47!'prfle')'. (30) 

Another special case of interest corresponds to 
l' « f. Here, for normal incidence we obtain 

K = k + 27!'pg = k + 27!'pt . 
ie k ' 

1] = E = 1'-, Z = 1. 
3 L. L. Foldy, Phys. Rev. 67, 107 (1945). 

(31) 

For this case, 

cp = e
ikz

, WI = eiKz
, WT = eiKd+ikz, WR = O. (32) 

We have thus obtained simple relations for the 
required parameters E and I'- in terms of f. However, 
f itself is a function of e and 1'-. Thus, in order to 
solve the above equations, we must express f 
explicitly in terms of E and I'- for specific scatterers. 
In a following section we consider special cases in 
detail. 

3. ENERGY CONSIDERATIONS 

In Sec. 1.3.2, we worked with the usual theorems 
for the isolated scattering amplitude g(ko, k) in 
order to construct analogous theorems for S(ko, k) = 
g(ko, k) - Q(k)g(ko, k'), and used these theorems 
to interpret the propagation number r(k) physically. 
Then in Sec. 1.3.3, for lossless scatterers we showed 
that our explicit forms for the average energy flux 
0) = Re (w*Vw /ik) in terms of S fulfilled the 
energy theorem for the distribution 

(J). Zo = (C + I)· ZO = const, (33) 

i.e., that the sum of the coherent and incoherent 
flux normal to the slab is constant. In effect, Sec. 
1.3.3 obtained theorems for S by applying energy 
considerations to the distribution, and showed they 
were identical to the forms obtained in Sec. 1.3.2 by 
considerations for an isolated scatterer. 

In the present treatment the equivalent isolated 
scatterer problem yielding 

S(ko, K) = [1 - Q(K))g(ko, K) 

appears too general to enable us to parallel the 
previous procedure. Instead we essentially exploit 
the development of Sec. 1.3.3 to determine the 
constraints on S arising from applying the energy 
theorem to the distribution. 

Thus the various forms for the coherent and 
incoherent intensities given in Sec. 1.3.3 in terms 
of G and S apply equally in terms of the present 
functions. In particular, the coherent intensities 
outside the slab are given by 

C = Iffil2 k' /k = Iffil2 i' for 

C = ]312 k/k = 13]2 i 

z < 0, 

for z > d (34) 

in terms of the present ffi and 3. Similarly, to trace 
the energy lost from the coherent field, we may 
approximate the corresponding incoherent flux by 

[ 
2P2 pa] Id IIGCt:k,) 12 d 

1"-' PI cos a, 7!'k 'Y?' ° dt ! cosO, sO" 

r - r 
s = ' Ir - r,\ ' (35) 
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where the three terms in the brackets are appro- Rewriting the g relations to make g explicit, we 
priate multipliers for one, two, and three dimensions, have for example 
respectively, and where fl/2 sdfl./cos 8. ranges 
over the forward or back half-space of angles (i.e., 
211" or 11" in three or two dimensions), or reduces to 
s = i or i' in one dimension. 

Re [(1 - Q)g(k, K)J = Re [(1 - Q)g(k, K')/QJ 

= -~ Ig(ko, K)12 II - QI 2/(1 _ IQI2
), (42) 

Applying the energy theorem (33), we obtain or equivalently 
analogous to (3.81) 

(36) 

where ~ is the average over all directions of observa­
tion. Substituting IGI2 of (18) we integrate over r; 
then substituting Iffil2 and I~W from (16), we equate 
corresponding terms to obtain 

2 I r = 2C~ Ig(ko, K) 12 
m 1 _ IQI2 

_ 2C~ Ig(ko, K')1 2 
_ Pp. 

- 1 - IQI2 - cos a ' 
(37) 

2 Re r = C~g*(kI!)J(ko, K') 

_ C~g(ko, K)g*(ko, K') 
- ImQ (38) 

where p. is the multiple scattering cross section of 
one element for conversion from coherent to inco­
herent radiation, and 2 1m r equals the energy 
lost from unit area of coherent wave front as a result 
of incoherent scattering. 

In order to relate ;m: I~W to Re g, etc., we refer 
back to (14), (15), and (17) and write 

i(r - 1') = C(1 - Q)g(k, K) = Cg(k, K), 

i(r + 1') = C(1 - Q)g(k, K')/Q = Cg(k, K')/Q (39) 

[cf. (3.50)J. Consequently, from (39) and (37), we 
obtain 

2~ Ig(ko, K) 12 = -4 Re Z Re [g(k, K)/(Z + l)J 

-4 Re Z Re [g(k, K')/(Z - I)J. (43) 

Similarly 

2;m: Ig(ko, K) 12 = -4 Re Z Re [g(k, K)/(Z + I)J 

-Re [g'(Z* + 1) - g(Z* - I)J. (44) 

4. ILLUSTRATIONS 

In order to apply the present formalism in detail 
to specific scatterers, we require the appropriate 
g(k, K) explicitly in terms of K. For scalar phe­
nomena, g(k, K) corresponds to the generalized 
single body scattering problem specified by three 
wave functions such that 

(\72 + K,2)1/; = 0, 

(\7
2 + k2

)v = ° (45) 

where cp = eiK
., (with 1m K > 0) is the excitation, 

I/; (which is to be nonsingular) is the field inside the 
scatterer, and v is the scattered wave fulfilling the 
usual free-space radiation condition at infinity. Thus, 
asymptotically, v ,...., JC(kr)g(ko, K), where the 
new scattering amplitude g has the usual Green's 
formula surface integral form in terms of v, i.e., 
g(ko, K) = {e- ikO

", vCr'; K)}. The problem is made 
determinate by boundary conditions at the scatterer, 
e.g., 

21m r = -2CRe g(k, K) = 2CRe [g(k, K')/Q] Acp + v = A 'I/;, (46) 

-2C Re [g(k, K) - Q*g(k, K')] 
1 _ IQI2 

_ 2C;m: I g(ko, K) 12 
- 1 _ IQI2 . 

Similarly, from (39) and (38), 

2Re r = 
_ CRe [g(k, K') - Q*g(k, K)J 

ImQ 

= C;m:g*(ko, K) g(ko, K'). 
ImQ 

(40) 

(41) 

Analogous results for g(ko, k) are discussed in 
Sec. 1.3.2. 

The volume integral forms for u and g this formula­
tion leads to, as well as the results for the scattering 
coefficients in the series representations for the 
separable problems of the slab, cylinder, and sphere, 
are significantly different from those for the con­
ventional isolated scatterer problem. 2 

For three-dimensional electromagnetics, we re­
place the scalar functions cp, 1/;, and v by analogous 
vector functions having zero divergence (represent­
ing E or H fields) and use the operator - V x V x 
instead of V 2

• Thus 

V x V x F - IlF ~ 0, V·F = 0, (47) 
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where (F, K) stand for ('" = ee,K'r, K = k'YJ), 
(t!!, K' = kr/), or (v '" X(kr)g, k). The boundary 
conditions at the scatterer are 

n x ('" + v) = n x t!! , n x(BV x", + V xv) 

= n x (B'V xt!!), (48) 

where B = 1/,u, for", = Eo, and B = 1/ dor", = Hi, 
etc. Surface integral and volume integral representa­
tions for u and g, as well as scattering coefficients 
for the separable problem of the sphere are given 
elsewhere.2 

To use the explicit results2 for g(k, K) in our 
present treatment of scattering by random distri­
butions, we identify K of (45) with K of (4) and (21): 
thus K·r = rz + kx sin a, where r is given in (14). 
Similarly we use A = 1 and B of (20) in g(k, K). 

4.1. Small Spheres 

Our first illustration deals with small spheres of 
radius a and arbitrary E' and ,u'. The case where 
the scattering from an isolated sphere is specified 

by the sum of an electric plus magnetic dipole is 
of particular interest, since the resultant bulk 
parameters E and ,u should then correspond to 
those of a homogeneous "Maxwellian medium"; 
i.e., E and ,u should be independent of the polariza­
tion and of the direction of the incident field. [The 
shortcoming in this respect of E and ,u obtained from 
the procedure based on g(k, k) was noted in (3.33) 
of 1.] We show that the present procedure gives 
satisfactory results; also, if we take the "available 
volume" Va for the distribution to equal the original 
volume Vo less the space occupied by the N scatterers 
(NV.), then in terms of Po = N /Vo we obtain the 
Lorentz-Lorenz4 or "£2" form as the first ap­
proximation. 

As discussed elsewhere,2 we may solve the gener­
alized electromagnetic scattering problem for the 
sphere by separation of variables and represent the 
scattered wave as a Hankel-Legendre series. For 
an incident wave", = eiKrco.8x/x .the corresponding 
"two-space" scattering amplitude to order a6 was 
shown equal to 

g = [!(C l + C{ cos 0) + i(C2 cos 0 + C~ cos 20)] cos w91 

- [!(Cl cos 0 + CD + i(C2 cos 20 + C~ cos 0)] sin WWl, 

C _ i2k2 Ka3(,u' - f.J.) 
1 - 3,u(f.J.' + 2) 

(49) 

X {1 + K2(2,u' - f.J.)(2 + f.J.') + 5e(f.J.' - 2)(f.J. - ,u') - K
,
2,u'(,u + 2) 2 + "le 3 (f.J.' - 1)} 

1O(,u - ,u')(2 + ,u') a 23 a ,u' + 2 ' 

where the notation is to indicate that the braced 
and bracketed functions of C' differ from their 
analogs in C in having the ,u's replaced bye's. The 
subscript 1 indicates a unit vector, and 0 and ware 
essentially the usual polar and azimuthal angles. 

The above amplitude is an "electric amplitude" 
normalized for an incident wave E, = eiK.rxl. The 
corresponding "magnetic amplitude" normalized for 
an incident field H = eiK'rYI is related to (49) 
through 

g .. = 0 xg'YJ/e, 'YJ = (f.J.ei I2
, 0 = r/r; Hi = eiK.rYl' (50) 

We work with gm when we treat the slab distribution 

• For brevity, we label as the "£2 form" of any parameter, 
the form (1 + 2poX)/(1 - poX) obtained by Mossotti (1847), 
Clausius (1897), Maxwell (1873), Lorentz (1880), and 
Lorenz (1880); see V. Twersky, J. Research Nat!. Bur. 
Standards. MD, 715-730 (1960) for citations to the early 
literature, as well as for citations to other work. 

excited by a field polarized in the plane of incidence. 
On the other hand, for the case of polarization 
perpendicular to the plane of incidence, E = e,K.rYII 
we rotate (49) through 90°; i.e., we replace W by 
W + 71'/2 and indicate the corresponding ampli­
tude by 

g, = g(w + 71'/2); (51) 

Equations (50) and (51) correspond to (24) and (25), 
respectively; the scalar formalism suffices for the 
coherent field since the sphere fulfills (26). 

We use (50) and (51) for our present applications. 
In these forms, 0 is the angle between the directions 
of incidence and observation, such that 

K·r = Kr cos 0 = Kr[cos OK cos Or 

+ sin OK sin Or cos (WK - wr)]. (52) 
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The angles OK and Or are measured from the slab 
normal (ZI), and the w's counterclockwise from the 
plane of incidence (y = 0). 

If we retain only the dipole terms of g, and 
restrict attention to the plane of incidence then 

where we used w 
Similarly 

(53) 

o in (49), and r l x 61 = YI' 

E = 1 + 3w~' /(~' + 2) 
1 + 3w/(/ + 2) 

(~' - 1) 
~ == Wo e' + 2 ' 

1 + 2~ 
1 - ~ 

W 
Wo = 1 + w· (59) 

If we assume Vo = Vo - NV" then Wo = po47ra
3 /3 = 

Po V. = NV./Vo is the fractional volume (the 
fraction of unit volume of distribution occupied by 
scatterers) and (59) is the usual L2 form. Similarly, 
substituting g+ and g_ of (56) into p. of (28) we obtain 

/I = 1 + 27rp (fL~ _ g- sin
2 a) 

(54) r ik e ,},r 

where we used w = 7r/2 and WI = -Yl in (49). From 
(53) we obtain twice the symmetric and anti­
symmetric components with respect to reflection of 
either OK or Or in the slab face: 

gm + g~ = (31//~)(Cl + C{ sin OK sin Or), (55) 

gm - g~ = (31//~)C{ cos OK COS Or· 

p.' - p. 
= 1 + 3w-,--· 

p. + 2· 
(60) 

Solving for p. we obtain the same form as (59): 

p.= 
1 + 3wp.' /(p.' + 2) 3IDe 
1 + 3w/(/ + 2) = 1 + 1 - IDe ' 

(
1./ - 1) 

IDe = Wo / + 2 . (61) 

In particular, in the specular directions Or = Ok == a On the other hand for Ei = eeikor , we use the 
[and reverting to OK == f3 as in (20)], we have to forms of (56') in the forms obtained by interchanging 
order a3 

~ and IJ. in (27). Thus solving for IJ. in 
gm + g~ = g+ = 

• 3 3[IJ.' - P. 1/ (~' - ~) 0 • ] 

z2k a IJ.' + 2 + -; e' + 2 sm f3 sm a 

IJ.-1 = 1 _ 2:rpg!.. = 1 _ 3W« - IJ.), 
zk'}'r IJ. IJ. + 2 

we again obtain (61). Similarly 

(62) 

= i2(ka)3[:; ~ ~ + ~ C~: ~ ;) sin
2 

a J (56) E = 1 + 27rp (g; _ g!.. sin
2 a) 

ik e ,},r 
, i2(ka)

3 (~' - ~) 
gm - gm = g- = -~- 1/ / + 2 cos f3 cos a 

E' - E 
1 + 3w-,--

E - 2 
(63) 

= i2a
3
kr,}, (E' - E) 

E / + 2 ' 

leads directly to (59). 
For all cases we may write the symmetric form 

where we used k1/ cos f3 = K cos f3 = r and X = w X' = _w_ X' 
o 1 + w ' 1/ sin f3 = sin a. Similarly for g. we merely inter-

change ~'s and IJ.'S in the above; we indicate this by 

g. + g: = g: = g+(~ ~ IJ.), 

g. - g~ = g!.. = g_(E ~ IJ.). 
(56') 

Thus for Hi = eeikor
, we substitute g_ of (56) 

into ~ of (27) to obtain 

E -1 = 1 _ 27rpg_ = 1 _ 3w (~' - E) 
ik'}'r E E + 2 ' 

(57) 

where 

(58) 

is the volume of the scatterers divided by the 
available volume. Thus 

x' - 1 
X' = x' + 2 ' (64) 

where x --7 x' as Wo --7 1, and x --7 1 as either Wo ,--7 0 
or x' --7 1. 

Thus the present multiple scattering formalism 
in terms of "schizoid scatterers" g(k, K) has led to 
satisfactory results for small spheres of arbitrary e' 
and IJ.' (i.e., for scatterers possessing both electric 
and dipole moments); (1) we obtained the L2 form 
as the first approximation for both E and IJ.; (2) the 
results for E and p. are independent of the polarization 
and of the direction of the incident field (i.e., the 
parameters associated with the coherent field specify 
a unique Maxwellian medium); (3) the behavior of 
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the bulk parameters parallels that of the parameters 
of the isolated scatterers (e.g., if ,./ ----+ 1 so that the 
scatterers become simple electric dipoles, then fJ. ----+ 1 
and the medium shows no magnetic effects). In 
all three of the above respects, the formalism of I 
in terms of conventional scatterers g(k, k) is in­
adequate (unless hole corrections, etc., are com­
puted). Thus (3.33) for electric dipoles (fJ.' = 1) 
gave fJ. = 1 only for polarization E;; for the other 
case, expect for normal incidence, J.' differed slightly 
from unity. For both cases, (3.33) gave only E = 
1 + 3w(e' - 1)/(e + 2). For sparse concentrations, 
the results of I and of the present section reduce 
to the same forms. 

The corresponding index of refraction for all 
cases is 

2 
TJ = efJ. = 

1 + 3«(t + WC + (tWC)/(1 - (t - WC + (tWC), (65) 

which reduces to the V form if either m1: = 0 (i.e., 
fJ.' = 1, and TJ2 = E) or (t = 0 (i.e., e' = 1, and 
TJ2 = fJ.). 

For the limiting case of a perfect conductor, we 
let e' ----+ co and JJ.' = TJ,2/ E' ----+ 0 in the above to obtain 

E = 1 + 310 = 1 + 2wo 
1 - Wo ' 

1 1 - Wo 
fJ. = (1 + 3w/2) = 1 + wo/2 ' 

~ 1 + 3woX' [1 + i2(ka)3 (1 - wo)X'J (69) 
1 - woX' 3 1 - woX' , 

where the final form retains only terms to the order 
e. For x equal E and J.L, the imaginary terms propor­
tional to (ka)3 play the role of electric and magnetic 
"conductivities," respectively. 

Similarly for the limiting case of a perfect con­
ductor, we have X'(€,) = 1 and X'eJ.L') = -t. Thus 

e - 1 _ wo[1 + i2(ka)3/3J 
e + 2 - 1 + iw02(ka)3/3 ' 

e = 

fJ. - 1 _ -wo[1 - i(ka)3/3J/2 e70\ 
J.L + 2 - 1 - i(ka)3/3 ) 

1 + 2wo[1 + i(ka)3] 
1 - Wo 

______ 21~-~w~0~--~ J.L=-:-
(1 + wo/2)[1 - i(ka)3J 

1 - Wo [ i(ka)3 ] 
~ (1 + wo/2) 1 + (1 + wo/2) . ('11) 

From the above we may construct TJ2 = eJ.L, 
and its real and imaginary parts. Thus writing 
x = Xr + iXi, we obtain in general 

, TJ'} {cR[( 9
2

)1/2 ]}1I2 2TJrTJi=EiJ.Lr+ErJ.Li==tf, = 2 1+ffi2 ±1 . 

TJi (72) 
2 1 + 2wo 

TJ = 1 + wo/2' (66) Since 9/cR « 1, we may use 

The above results based on retaining only the a3 

terms of g neglect the effects of incoherent scattering 
on the coherent field. In order to take into account 
such "losses," we keep in addition the leading real 
terms of g [i.e., the a6 terms of (49)]. 

Thus in (56), we now multiply the terms of the 
form (x' - x)/(x' + 2) by 

L(x') == 1 + iAX', A == 2(ka)3/3, 

TJr ~ vIffi (1 + 92/8cR2
) 

~ (ErJ.Lr)l/{ 1 + ~ (z + ::YJ. 
vIffi (9/cR2) ~ (E,J.Lr)l~ (~ + J.Li) 

2 Er J.Lr 

(73) 

_ ~ ( / )1/2 + J.Li ( / )1/2 - 2 J.Lr Er "2 Er J.l.r . 

X' = (x' - 1)/(x' + 2). (67) If only one dipole is present (e.g., fJ.r = 1 and J.Li = 0), 
then TJ~ - TJ: = x" 2TJrTJi = Xi, and 

The net effect is to replace w in E of (57) and (59) 
by wL(e'), and w in fJ. of (60) and (61) by wL(fJ.'). 
Thus the symmetricform X = woX' = wX' / (1 + w) 
of (64) goes over to 

X = w(1 + iAX')X', = wo(1 + iAX'):C . 
1 + w(1 + iAX ) 1 + iWoAX 

(68) 

Equivalently, E and J.L are given by 

x= 
3woX'(1 + iAX') 

1 + 1 - woX'[1 - i3A/(e' + 2)] 

[ 
1 (x .)2J [ 3w X' Jl/

2 

TJr ~.yx.- 1 + 8 x: ~ 1 + 1 - ~oX' 

'{1 + .! [ (ka)3wo(1 - WO)X,2 J2} 
2 (1 - woX')(1 + 2woX') , (74) 

"-'~""' (ka)3wo(1-wo)X,2 
TJi"-' 2 .yx.-""'(1-woX')2[I + 3woX' /(I-woX')]1/2' 

The scattering amplitude gm of (53) including loss 
terms equals 
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gm = i'l'/ (ka)3{21. (J.L; - J.L)L(J.L') 
e J.L J.L - 2 

+ C~' ~ ~) cos (OK - Or)L(e')}' 

gm = i~ (1 + iiT)( cos 0 cos W<t)l + sin Wl)l) , 

gm = e·gm(w = 0) = iT (I + iiT) cos 8 == g(8), (82) 1] 

L(x) = 1 + i2~a3 X, X = (: ~ ~). (75) which corresponds to the dipole form (30). From 
(30) we have Z = 1/1], and we must show that 

Substituting (69) for e and J.L, we obtain 

gm = (i1]/ e) (ka) 3 {(1]/ J.L)M(J.L') [1 + (i2/3)(ka)3M(J.L')] 

+ M(e')[1 + (i2/3)(ka)3M(e')] cos (OK - 8r)}, 

M(x) = (1 - Wo)X/(1 - woX) (76) 

where terms involving (ka)9 were neglected. 
For real e' and l, we may show that (76) fulfills 

the single-body relation (43) obtained by "working 
backwards" from the theorems for the distributions, 
i.e., 

mr Ig(ko, K) 12 = 4
1
1/" J Igl

2 dn 

= -2ReZ·Re [~~ ~)J. (77) 

For simplicity, we consider only the case J.L' = J.L = 1, 
a = (3 = o. 

For E = eso, we obtain 

g. = g ,( cos 8 sin Wl)l - cos W<t)l) , 

g, = i(ka)3M(E')[1 + (i2/3)(ka)3M(e')] 

== iT(1 + ijT) , (78) 

which corresponds to the "monopole form" (29). 
From (29), we have Z = 1], and we must show that 

mr Igl2 = -2Re 1]·Re -g-1 + 1] 

21],[g,(1 + 1],) + g;1]i] 
(1 + 1]r? + 'I'/~ 

(79) 

Now g. itself satisfies the theorem for a conventional 
dipole, i.e., mr Ig.12 = i Ig.1

2 = -Re g. = -g,. 
Substituting this in (79) and clearing the fraction 
gives 

gr(1 + 1]~ - 1]~) = 2g,1],1]r. (80) 

Equivalently, we require 

Using (69) for E, and T as defined in (78), we have 
Ime= E, = -(1- Er )2T/3jthussinceg; = Tand 
gr = _2T2 /3 we see that (79) fulfills (77) and (81). 

For the other polarization, H = eso, we obtain 

mi Igl2 = -2R!R g(O) 
e 1] e 1 + 1/1] 

= -~Re71.Re g(Oh 
171/ 1+71' 

(83) 

Now, 1]gm of (82) fulfills the theorem for a con­
ventional dipole, i.e., mr l1]gml2 

= -Re [1]g(O)]. Thus 
if we multiply (83) through by 17112 and note that the 
present 1]g(O) is identically g. of (79), we see that 
we have reduced the present case to the previous. 
Thus gm of (82) fulfills (77), and also the additional 
relation 

(84) 

Equivalently, since 1]e* = 11]/2 '1/*, we have 

Re [1]*g(O)J = -mi Ig12. (84') 

The effects of the quadrupole terms of the sphere 
on ei and J.L, may be obtained from (49), and more 
complete results can be obtained from the separable 
series representation for the arbitrary sphere given 
in reference 2. The quadrupole terms if significant 
would introduce factors of (ka)2 in the real part~ 
of the parameters. 

4.2. Large Tenuous Scatterers 

Another case of particular interest is that of 
"tenuous scatterers" (J.L' = 1, and K' :=:::::i k :=:::::i K) 
large compared to wavelength. For such scatterers , 
we approximate the volume integral representation 
of g(k, K) by a "modified WKB technique".2 Thus 
for E, = xle

iK
., and corresponding to J.L = '1/ of (31), 

(85) 

where z'(x', y') ranges over a line z, - Zo within the 
scatterer, and where a == Yl xo and b == Xl - (o·xl)o. 

In the forward direction (0 = Zl), we retain only 
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the first powers of K' - k and K - k in the inte­
grand and obtain 

II = V.[l + i(K' - K)L + i(K - k)L'], 

12 = V.[1 + i(K - k)L']; 

1 flO'] 
L' == V z' dV(x', y',z'), 

[hI 

1 f Iz,] 
L == V (z' - zo) dV(x', y', z') 

[eol 

(86) 

where we may take the origin as the midpoint 
of the longest line through the scatterer drawn 
parallel to the direction of incidence. The constant 
L' is the distance of the centroid of the scatterer 
from the "midplane" z = 0; consequently it van­
ishes for shapes symmetrical to that plane. On 
the other hand, if we generate a new body by 
translating the volume elements of the original 
body parallel to z to yield a flat surface facing the 
direction of incidence, then L is the distance of the 
centroid of the new shape from its flat face. Thus 
for an ellipsoid of semiaxis a along z, we have2 

L = ia, L' = 0, (87) 

where L is twice the distance of the centroid of a 
hemi-ellipsoid with respect to its flat face. Similarly 
the next terms of such expansions as series of 
volume moments involve the radii of gyration, etc. 

Substituting (86) into the forward value of (85) 
(i.e., a = b = Xl) we obtain 

g = xl·g(kzl , KzI) = (ieV./271)(K' - K) 

. [1 + i(K' - k)L + i(K - k)L']. (88) 

For scatterers symmetrical to a plane perpendicular 
to the direction of incidence (88) reduces to 

g = (ik2V./27r)(K' - K)[1 + i(K' - k)L]. (89) 

In the back scattered direction (0 = -ZI), we 
have g' = ie(K' - k)II( -k)/27r, where 11 is, in 
general, small. For example, for spheres of radius a, 
II is proportional to a/k2

, and the ratio of back 
to forward scattering fulfills 

Ig'/gl ex: (ka)-2 « 1. (90) 

(See reference 2 for complete results for the forward 
and back scattered values for spheres.) 

The above results suffice to determine the coherent 
field for a plane wave normally incident on a slab 
region of tenuous scatterers. [For nonnormal 
incidence, i.e., a ;;>£ {3 ;;>£ 0, we require the values for 
O·ZI = cos ({3 - a) ~ 1, ando·zl = -cos ({3 + a) ~ 
- cos 2a.] Corresponding results for the incoherent 

scattering are obtained from simple approximations 
of g(ko, Kz I ). Thus the integral 12 , for arbitrary 
angles of observation, has the standard form of a 
modified Born approximation, say, 

12 = V.J(K, k), 

where, e.g., for a sphere, 

J = 3[sin (x)/x3 
- cos (x)/x2

] , 

(91) 

x/a= IKzl-kol = [(K _k)2+4kK sin2 (0/2)]1/2. (92) 

Similarly, if we neglect (K - K')zo in h we obtain 

II ~ V.J(K', k). (93) 

To lowest order in K' - k and K - k we use 
J(k, k) == J B in (91) and (93). Thus 

g(ko, KzI) ~ (ik
2V.j47r) 

. [2(K' - k)b - (K - k)(a + b)]J B, (94) 

where J B is the usual Born approximation (e.g., 
for spheres the argument of (92) is to be taken as 
2ka sin (0/2)) such that J B ~ I as 0 ~ O. 

Substituting (89) into (31), we obtain 

K = k + (27rp/ie)g 

= k + w(K' - K)[1 + i(K' - k)LJ, (95) 

wherew = pV. = wo/(1 - wo). Consequently, 

K = k + (K' - k)wo[1 +, i(K' - k)L] 
I + iWo(K - k)L 

~ k + (K' - k)wo[1 + i(1 - wo)(K' - k)L] , (96) 

which gives the real and imaginary parts of K to 
lowest order in K' - k. Thus for lossless scatterers 
the phase change Re K - k increases linearly with 
wo, and the corresponding attenuation (conversion 
to incoherent scattering) has a parabolic distribution 
around Wo = !. The function K is symmetrical in 
the parameters in that interchanging k and K', and 
simultaneously interchanging Wo and I - Wo leaves 
K unaltered. (Thus, essentially as for the case of 
small spheres, it is plausible to take Va = Vo - NV. 
in order to interpret Wo as the fractional volume.) 

Substituting (96) back into g we obtain 

g(k, K) ~ (iV./27r)k2(K' - k)(1 - wo) 

. [1 + i(K' - k)(1 - wo)L]. (97) 

(Thus as the fractional volume Wo approaches 
unity, the scatterer represents less of a discontinuity 
in its environment.) The corresponding approxima­
tion for Ig(OW of (94) [obtained on using (96)] may 
be taken as 
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Ig(ko, Kz) 12 ~ 

l(k 2 V./411'")J B 12 12(K' -k)b- (K' -le)WO(a +b) 12 

= [leeK' - le) V./211'"]J B[2 

X[(I-WoCOS2~r-(1-Wo)Sin2 ecos2 w] , (98) 

which, for e = 0 reduces to Igl2 of (97) to order 
(K' - k)2. In general, /J B(eW is peaked sharply 
around e = 0 and only a narrow cone of angles 
need be considered for computing the total cross 
section (e.g., for a sphere and lea ~ 20, a cone of 
half-angle 10° around e = 0 receives about 95% 
of the energy); consequently, we may use 

Ig(ko, Kz1W ~ (1 - wo)21 W(K' - k) V./211'"JJ/2 

= (1 - WO)2 /gB(leO, lez1) /2, (99) 

where gB(ko, lez) is the Born approximation for 
the ordinary isolated scatterer problem. 

From (32), the coherent power transmitted 
through a slab of thickness d is given by 

2 1m K = 2L(K' - k)2wo(1 - wo). (100) 

For the present case Q = 0 (i.e., Z = 1), theorem 
(40) reduces to 

-411'"p 411'"p 2 
21m K = ~Re g(k, K) = /;2 ~ /g(ko, K)/ 

= t2 1/g(ko, K) /2 dO. (101) 

Thus g(k, K) fulfills the scattering theorem for 
ordinary scatterers. In view of the behavior of 

/J B/2 as a function of angles, we may restrict the 
integration over 0 to the forward half-space, i.e., 

2 1m K ~ -kPz f /g(ko, K) /2 dO. (102) 
(1/2) 

Using /G/ 2 = /g(ko, KWe-2ImKr in (35) we obtain 
the incoherent power received by a cone of half­
angle 0 around the direction of incidence: 

I·zo = I = Pzld dt f /g/2 e-2 
ImKr dO 

k 0 0 

= e2 {m K (1 - e-
2T

) 1. Ig/
2 

dO 

= (I - e -2T) q( 0) , (103) 

where 

f /g(ko, K) /2 dO f /g(ko, k) /2 dO 
q(o) = 0 ~ 0 , (104) 

1/g(ko, KW dO J, /g(ko, k) [2 dO 

i.e., q is the fraction of the total scattering cross 
section of one scatterer in free space received by 
the cone 0, such that q --+ 1 as 0 --+ 11'"/2. The corre­
sponding total normalized average power in the 
forward direction is thus 

J 'Zo = C + I = e-2T + (1 - e-2T)q(0). (105) 

Since the coherent reflected flux and the total 
incoherent scattering into the back half-space are 
negligible for this distribution, the energy relation 
exhibits itself in that J.zo = 1 for 0 = 11'"/2, i.e., 
the coherent transmitted power plus the total 
incoherent power in the forward half-space equals 
that incident. 
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A symmetric representation is sought for the motion of three particles in the limit of weak inter­
action. Operators with the desired symmetry can be obtained from the 6-dimensional generalized 
angular momentum tensor [F. T. Smith, Phys. Rev. 120, 1058 (1960)]. Here, the 4-dimensional 
p.roblem o~ motion in a plane is worked out. Symmetric angular coordinates are found, operators and 
elgenfunctlOns are constructed, and the coupling coefficients connecting this with more familiar 
representations are discovered. Formally, the eigenfunctions are similar to the symmetric rotor func­
tions, but with different arguments. 

INTRODUCTION 

GENERALIZED orbital angular momentum' 
has recently proved to be a common feature 

implicit in a number of treatments of quantal 
problems involving three or more particles.2 It has 
likewise arisen in the problem of the n-dimensional 
harmonic oscillator.3 Bargmann and Moshinsky,4 
treating the collective motion of N oscillators in a 
common 3-dimensional harmonic potential, also 
introduce some generalized angular momentum 
operators of a vector which they term the "pseudo­
spin." Most of the representations previously given 
are not completely symmetrical in the particles of the 
system, but there are problems in which such symme­
try would be a convenience. 

In this series of papers the possibility of con­
structing a symmetrical representation for a system 
of three particles is explored. This representation 

* Supported principally by National Aeronautics and Space 
Agency and in part by National Science Foundation. 

, F. T. Smith, Phys. Rev. 120, 1058 (1960). The results 
and notation of that paper will be assumed here; references 
~o ~ts ~quations will be preceded by the numerals I or II, 
mdlCatmg the relevant section. The following corrections 
should be made: read "-Y" in Eq. (1-38); read "3n" instead 
of "n" in Eqs. (II-25) and (II-27). 

2 Helium atom: T. H. Gronwall, Phys. Rev. 51, 655 (1937)' 
J. H. Bartlett, ibid. 51, 661 (1937); V. Fock, Izvest. Akad: 
Nauk S.S.S.R. Ser. Fiz. 18, 161 (1954) [translation: Kgl. 
Norske Videnskab. Selskabs Forh. 31, 138, 145 (1958)]; P. M. 
Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), p. 
1730. Nuclear 3-body problem (triton): R. E. Clapp, Phys. 
Rev. 76, 873 (1949), R. E. Clapp, Ann. Phys. 13, 187 (1961). 
3-body collisions or dissociation: G. H. Wannier, Phys. Rev. 
90,817 (1953); L. M. Delves, Nuclear Phys. 9,391 (1958-
1959); L. M. Delves, ibid. 20, 275 (1960). 

3 G. A. Gallup, J. Mol. Spectroscopy 3, 673 (1959), J. D. 
Louck and W. H. Schaffer, ibid. 4, 285, 298 (1960). Louck 
has now generalized this further to give the n-dimensional 
analog of spin angular momentum as well [Los Alamos Re­
port LA-2451, 1960 (unpublished)]. 

• V. Bargmann and M. Moshinsky, Nuclear Phys. 18 697 
(1960). ' 

will be based on operators derived from the general­
ized angular-momentum tensor A, all elements of 
which commute with the total-kinetic-energy oper­
ator and with A2 = t 2:> (Ai;)2. These operators 
are connected with the total ordinary orbital angular 
momentum L and with the symmetric tensor ~ 
which can be called the togetherness tensor since it 
determines (along with L) the probability of a 
collision bringing the three particles together. 

Symmetric representations of some 3-body prob­
lems have also been investigated by Mobius.s His 
attention is directed primarily to the construction 
of collective coordinates which simplify the solution 
of the problem, whereas in this paper the primary 
focus is on the operators. 

Ultimately, one would like to know both the 
complete set of commuting operators and the coordi­
nates in which their eigenfunctions can be most 
simply expressed. The preferable form for these 
eigenfunctions is a simple product of one-argument 
functions. In addition to such a complete expression 
for the functions, it is desirable to know how they can 
be expressed as a linear combination of the eigen­
functions in a more familiar representation. 

In this paper we shall pursue this program for the 
case of three particles confined to motion in a plane. 
This problem has considerable interest in its own 
right and is a prototype for the more complicated 
problem involving motion in 3-dimensional space. 

In a very recent paper Biedenharn6 has discussed 
extensively the properties of the 4-dimensional 
rotation group. His treatment was motivated by 
physical problems involving the Coulomb central 
field. The problem to be treated here may also be 

6 P. Mobius, Nuclear Phys. 16,278 (1960); 18,224 (1960). 
6 L. C. Biedenharn, J. Math. Phys. 2, 433 (1961). 
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considered as an exercise in the same group theoreti­
cal area, but we shall not discuss it from that point 
of view. However, it may be noted that the full 
4-dimensional rotation group is applicable only to 
problems in which there is no interaction between 
the particles. Here we shall be principally interested 
in a subgroup which is constructed in such a way 
that some of the symmetries will remain unchanged 
when the interaction is introduced. 

In what follows, attention is confined to the case 
of structureless, spinless particles. Once the prin­
ciples are worked out in this case, they can be 
extended to other cases as needed. Mbbius5 and 
Clapp2 have given some examples of problems in 
which the spin and symmetry of the particles must 
be considered. 

This paper is divided into two main sections. 
In the first, the coordinate systems which are most 
useful for the 3-body collision problem are described, 
and the relationships between them explicitly set 
forth. Many of these relations are applicable to 
the problem of three particles in space, as well as the 
restricted problem where they are confined to a 
plane. In the second part, the operators, eigen­
functions, and coupling coefficients are worked out 
for the special case of three bodies in a plane. 

In a subsequent paper we hope to discuss the 
symmetric representation for 3-body problems in 
3-dimensional space. 

A. COORDINATE SYSTEMS 

1. Rectangular Coordinates 

Thinking about three-body interactions is aided 
if we use a normalized center-of-mass coordinate 
system. This has the following properties: (a) The 
kinetic energy is a diagonal form with a common 
reduced mass for all the coordinates except those of 
the center of mass; and (b) the transformation 
between these coordinates and the laboratory 
coordinates of the particles is a linear one with 
constant coefficients that leaves the volume element 
unchanged and is invariant under rotations in 
ordinary space. The most general transformation 
with these properties leads to a family of coordi­
nate systems that depend upon a single parameter, 
of which we shall mostly need only three special 
members. Except for a normalizing factor, these 
special coordinates represent the vector between two 
of the particles and the vector from the center of 
mass of this pair to the third. 

Basic to this representation is the 3-body reduced 
mass J1.. It is useful to know its connection with the 

2-body reduced masses, J.l.1; for the pair ij and 
J.I.' k for the relative motion of k and the center of 
mass of ij. Closely related to these are the normal­
izing constants dk • Definitions and identities are 

llJ = m l + m 2 + m3, 

J1.i; = mim;/(mi + m;), 

J.I.£ = mk(m. + m;)jM, 

The masses also define certain angles. If (ijk) is an 
even permutation of (123), (3i; is an obtuse angle 
with the properties 

(3;; = -(3;i, (Jii = 0, 

tan (Ji; di d; sin (Jii = 1, 

d; d;mk cos (3i; = -J1., (2a) 

which lead to the identities 

(312 + (323 + (331 = 21T, 

L (1 mk/M) sin2 (J;k 
k 

= L (1 - mk/M) cos2 
(3;k = 1, 

k 

= L (1 - mJM) sin 2(3;k = 0. (2b) 

With these relations we can now define the 
normalized rela tive coordina tes {m~} . Here the 
prefix m labels the order in which the particles are 
paired. If x~ is the ith Cartesian component of the 
position vector Xk of the kth particle, the trans­
formation is 

~ 

m~: = L dkX~ sin (3km = d;.l( _X;,+I + X;'+2) , 
k-I 

3 

m~: = L dkX~ cos (Jkm = dm[x;' - (mm+l + mm+2)-1 
k~1 

(3) 

[If m = 1, Eq. (3) reduces to Eq. (1.2) of reference 1, 
except for a different convention as to signs.] 
Similarly the momenta become 

1 3 dk k . J1. ( p;'+1 p;'+2) 
m1T i = J1. L - Pi SIn (3km = - --- + , 

k~) mk dm mm+1 mm+2 
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The volume elements are invariant: 

dx! dx~ dx~ = dm~: dmf. dX i , 

The kinetic energy as transformed is 

1 6 2 1 3 2 

K = 2J.l t; (m1l"i) + 2M ~ Pi' 

(4) 

it should be noted that this is not a rotation in 
ordinary space. A more general coordinate system 
{<I>~ I is obtained by a rotation through the angle q,. 
The momenta transform in just the same way. 

2. Hyperspherical Polar Coordinates 

a. The Hyperradius 

The rectangular coordinates k~i in the six-dimen­
sional interaction space are useful for the formulation 
of generalized relations, but it is also valuable to 

(5) introduce a hyperspherical polar-coordinate system 
in this space. This involves one distance coordinate, 
the hyperradius p, and five angles. The hyperradius 
is of fundamental importance, as may be seen from 

(6) the identities which follow from its definition: 
6 

In Eq. (6), the superscript is suppressed on the / = L: (k~.)2 
1I"'S and the subscript runs from 1 to 6; this con- i-I 

(for any k) 

vention will often be used, always in such a way 
that W} ---t {~I' ~2' ~3} and {m ---t {~4' ~5, ~61. The 
position Xi and momentum Pi of the center of mass 
will usually be ignored. 

Physically-except for a scale factor-ke repre­
sents the vector from particle j to i, and ke repre­
sents the vector from particle k to the center of 
mass of the pair (ij). If (ijk) run cyclically, 

Another useful quantity is the vector from the 
center of mass of all three particles to one of them, 

-I 
=J.l 

3 

(for a = 1 

= (2J.lM)-1 L: mimi Ix' - xi l2 

i. i-=1 

'" -1 I i k 12 = J.l L.... mi x - x . 
eyo 

or 2) 

(11) 

Among other properties, the identities of Eq. (11) 
show that J.l/ is the moment of inertia of the three­
body system about the axis perpendicular to the 
plane in which they lie. 

The five angles can be chosen in various ways. 
Zk = (1 - mk)yk = L dk k~2. M mk 

The identities obviously follow: 

X!2 + X~3 + X~I = L: dk k~: = 0 

(8) We shall be principally interested in two, one that 
treats the particles symmetrically and a second 
suited for the representation involving two uncoup­
led angular momenta. 

k 
b. The Symmetric Coordinate System 

and 
To start with, one can separate the external from 

(9) the internal coordinates of the configuration. For 
two of the external coordinates the obvious choice 

Clearly, the coordinate system hO is the one to 
use when particles i and j are close together and k 
is far away, so that the potential is a function of 
k~1 only. It is a consequence of Eq. (3) that the 
transformation between the coordinates {k~l and 
an equivalent system {j~} is a simple orthogonal 
transformation, the kinematic rotation through the 
angle flkj, 

i~: = k~: cos flkj + k~; sin flki' 

j~~ = -~: sin flki + k~~ cos flki ; (10) 

is the pair of angles locating the orientation of the 
plane of the three bodies. The third external coordi­
nate fixes in some manner the orientation of the 
figure with respect to some axis in that plane. One 
way of doing this is by the angle in the plane from 
a fixed axis to one of the principal axes of inertia 
of the figure. In this case, the three external angles 
can be taken as the Euler angles orienting the 
principal figure axes with respect to a set of fixed 
axes. For motion confined to a plane only one 
external angle is needed, and it can again be defined 
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by the orientation <p of the principal axes in the plane. 
One of the internal coordinates is the hyper­

radius p. It is related to a moment of inertia, and 
it is natural to look to the other principal moments 
of inertia for additional coordinates defined sym­
metrically with respect to the three particles. 

If the system lies in the xy plane oriented so that 
its principal axes coincide with the Cartesian coordi­
nate axes, the moments of inertia are 

Ia = J.l/ 

12 = L: mk(z~)2 = J.l L: (1 - mdM)(k~i)2 
k k 

= J.l[Ui)2 + Ui)2] (any j), 

II L: mk(z~)2 = J.l L: (1 - mdM)(I,~~)2 
k k 

(12) 

Since II, 12 , la, are the principal moments, there 
is a subsidiary condition, 

IIz/J.l = (1/J.l) L: mkz~z~ = L: (1 - mk/M) k~i k~~ 
k k 

= ,~i ,~~ + ,~~ ,~; = o. (13) 

The moments are not all independent, because 
II, + 12 = Ia (this is a well-known result for any 
plane lamina). One is therefore led to define the 
difference 10 = I I - 12 , 

Io/J.l = (11 - I 2)/J.l = L: (l - mdM)[(k~D2 - (k~i)2] 
k 

= U~)2 + U;)2 - UD 2 - Ui)2. (14) 

This is related to the area A of the triangle by 

(15) 

We can then define a new angular coordinate 6: 

Io/J.l = / cos 26, (16) 

The quantity 10/ J.l is closely related to some 
internal coordinates used by Clapp.2 He introduces 
three scalar coordinates related to 

,v = 2 ,~1.,~2 = 2 L: ,~! ,~~; (17) 

and to (krl)2 and (kr2)2. The sum of the latter two 
is /, and their difference can be written 

(18) 

The pair Cu, ,v) transform under the kinematic 
rotation of Eq. (10) just like a vector rotated 
through an angle 2(3k'. The magnitude of this vector 
is an invariant, and it proves to be just 

(,u2 + ,V2)! = Io/J.l = p2 cos 26. (19) 

It is appropriate to choose as the third internal 
coordinate an angle jeI> such that 

,u = (Io/J.l) cos 2 ;eI> = p2 cos 26 cos 2 jeI> 

= UI)2 + U2)2 - U4)2 - U5)2, 

;V (Io/ J.l) sin 2 jeI> = / cos 26 sin 2 jeI> 

= 2C~1 ;~4 + ;~2 ;~5). 

These equations should be supplemented by 

4A = / sin 26 = 2C~1 ;~5 - ;~2 '~4). 

(20) 

(21) 

The kinematic rotation to a new basis, say (kU, kV), 
is accomplished by replacing jeI> by 

keI> = (3k; + ;eI>. (22) 

This coordinate is not completely independent of 
the numbering of the particles, but the dependence 
is the trifling one of a shift of origin. The quantities 
Cu, jV, A) and the coordinates (p, 6, jeI» are invar­
iant to ordinary rotations in 3-dimensional Cartesian 
space. 

The internal coordinate p, 6, jeI> will prove to be 
the appropriate ones for the symmetric represen­
tation of the three-body problem. For the planar 
problem they are naturally associated with the 
external coordinate <p which represents the orienta­
tion of one of the principal axes in the plane. In 
terms of the rectangular coordinates in the xy plane 
(j~I' j~2' j~4' j~5), we can write 

s = / cos 26 cos 2<P 

= Ul)2 + U4)2 - C~2)2 - C~5)2 

t = / cos 26 sin 2<p = 2Ul ;~2 + ;~4 ;~5). (23) 

There is an interesting symmetry in the equations 
defining <p and jeI>, Eqs. (20) and (23). <p is invariant 
to a kinematic rotation (changing j), but it changes 
by an additive constant under a rotation of the 
basic Cartesian axes. 

The potential for field-free problems is dependent 
only on the internal coordinates. It is convenient 
to represent it by equipotential surfaces in a spheri­
cal polar coordinate system (p, 6, jeI» such as 

z = p sin 6 

jX = p cos 6 cos jeI> 

jY = p cos 6 sin jeI>. 

(24) 

Note that z is just a function of the area A. In 
the plane z = 0,6 = 0, A vanishes and the particles 
are in a collinear configuration. The remaining 
coordinates in the xy plane are then just those 
that have previously been found useful for the 
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description of the motion of three particles on a 
line. 1,7 

The symmetries of the potential V(p, 8, ot» are 
important. They can be obtained from Eqs. (16) 
and (20) by noting that the potential is completely 
determined by (A, jU, jV) and that it is invariant 
to reflection of the figure in a line, which replaces 
A by -A: 

V(A, jU, jV) = V(-A, jU, jV). (25) 

Obviously 8 and jot> can each be changed by a 
integral multiple of 71" without affecting (A, jU, jV) 
and A alone changes sign as a result of the replace­
ments 8 +-+ -8 and (8, j<P) +-+ (8 + t7l", jot> + t7l". 
Thus we have, if m and n are integers, 

Yep, 8, jot» = Yep, ±8 + m7l", jot> + n7l") 

V[p, ±8 + (m + t)7I", jot> + (n + t)7I"]. (26) 

c. Other Angular Coordinates 

kV/ p = cos 28 sin 2 kot> = cos 2 kX' sin 2 kIP~. (31) 

From these follow also 

tan 2 kot> = cot 2 kX' sin 2 kIP!., 

tan 2 kIP!. = cot 2e sin 2 kot>. (32) 

The relation between <P and kIP+ can be found from 

s/ / = cos 28 cos 2IP = sin 2 kIP!. • cos 2 kIP+ 

+ sin 2 kX' cos 2 kIP~ ·sin 2 kIP + , 

t/ / = cos 2e sin 2IP = -sin 2 kX' cos 2 kIP~ 

X cos 2 kIP+ + sin 2 kIP~ ·sin 2 kIP+. (33) 

kIP+ and IP differ by an additive constant that 
depends on the internal configuration, 

(34) 

where 

cos 28 cos 2 kIP~ = sin 2 kIP:" 

When considering a representation in which two and 
angular momenta are uncoupled, the natural way 
of introducing a set of five angles is to express the cos 2e sin 2 kIP~ = sin 2 kX' cos 2 k<P'--, (35) 
vectors kf in the spherical polar coordinates (kr ., 

kO., kep.) and then define a new angle kX by the or 
equations 2 0 , • , tan kIP+ = cot 2 k<P- sm 2 kX 

3 

(kra)2 = L: (k~~)2, krl 
i=1 

(27) 

Since we shall here be interested only in motion 
in the plane, from here on we can consider just the 
special case kOI = k02 = 71"/2. Then, 

cot 2 kot> sin 2e. (36) 

The parallelism between the coordinate sets (e, 
kot>, ep) and (kX', kIP-, kep+) will ultimately be exploited 
in the discussion of the eigenfunctions. 

d. Domain of Integration 

The domain of variation of the coordinates 
k~4 = p sin kX cos kIP2, k~5 = P sin kX sin kIP2· (28) (kX, kepI, kI(2) is 0 ::; kX ::; 71"/2, 0 ::; kIPI' kIP2 ::; 271", 

In order to separate internal and external coordi-
and the angular element of integration is 

nates, let us define d
3w = t sin 2 kX dkx dkIPI d k<P2. (37) 

(29) 

The external coordinate is kIP+; the internal ones 
are (p, kX, kIP-). The transformation between the 
coordinates (8, kot» and (kX, kIP-) appears in a 
most symmetric form if we define 

kX' = 71"/4 - kX, 

Then 

4A/ / = sin 28 = cos 2 kX' cos 2 kIP!., 

kU/ / = cos 28 cos 2 kot> = sin 2 kX' , 

7 F. T. Smith, J. Chern. Phys. 31, 1352 (1959). 

(30) 

It is appropriate to use the same domain and angular 
element when (kIP+, kIP-) replace (keplJ ke(2). As for 
the symmetric coordinates, similar conditions also 
apply for IP and kot>, for which we can take 0 ::; kot>, 

IP ::; 271", but the range of 8 must be -71"/4 ::; 
8 ::; 71"/4 in order to span positive and negative 
values of A (see Eq. 21). The angular element is 

(38) 

An integration over the whole domain covers the 
hypersphere in the space of (~I' ~2' ~4' ~5,). The 
angular part of the eigenfunctions will be normalized 
to unity over the hypersphere. 
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B. OPERATORS AND EIGENFUNCTIONS with 

1. Operators 

a. General 

The symmetric representation is generated by a 
special set of operators derived from the generalized 
angular-momentum tensor A. This is defined in 
the normalized center-of-mass system by 

(i, j = 1, .. , , 6) 

or 

(i, j = 1,2,3; a, (3 = 1,2). (39) 

(In what follows, the prefix m will often be dropped 
where no confusion can result, and a single fixed 
value of m assumed.) The components of A obey 
the identity 

(40) 

as well as the basic commutation rule 

[Ai;, Aik] = ihA;k, 

(i, j, m, k all unequal). (41) 

All these operators commute with the kinetic energy 
T. 

From the 3 X 3 tensors ",A "fJ one can construct 
the total ordinary angular momentum 

L = ",All + ",A22 , 

the symmetric togetherness tensor, 

and the two other antisymmetric tensors 

and 

",A = ",A
12 + ".A21. 

(42) 

(43) 

(44) 

Under the kinematic rotation of Eq. (10), which 
corresponds to an interchange of particles, Land :E 
are invariant and mY and ",A transform like compon­
ents of a vector: 

(45) 

2M = { L :E} and 2 ",N = {rn Y 
-:E L rnA 

(46) 

Most of these tensors are antisymmetric and 
have no trace, but they have another fundamental 
invariant that is essentially the trace of the square 
of the matrix; to conform to the usual notation for 
angular momenta, let us define for any tensor B the 
scalar square 

B2 = t L: (BoY. (47) 
i.i 

In addition, :E has a nonvanishing trace which can 
be taken as 

~ - ~ '" ('" ) koIt - 2 L...J ~i.i. (48) 
o 

An important identity, derived from Eq. (2), is 

(49) 

The symmetric representation involves a family 
of commuting operators derived from L and :E. 
For interactions in 3-space, five independent opera­
tors are needed besides the kinetic energy. These 
include A2, L2, L., 1:" and a scalar operator 1:4, 
If the angular momentum L is written in vector form, 

(50) 

1:4 = L·:E·L = L: (L;1:;kLk)' (51) 
ik 

In the planar problem to which this paper is 
restricted, three operators are needed. These are 
A2

, L., and 1:,. In the collinear problem the only 
angular operator is A; it behaves just like a rotation 
operator in the plane, with eigenvalues ±AIi and 
eigenfunctions exp (±iAX). 

b. The Planar Problem 

The following operators enter into this problem: 

L = A12 + A45 , Y = A12 - A45 , A = A15 - A24 , 

1:, = tc1:ll + 1:22) = Au + A25 , 

1:_ = tc1:ll - 1:22) = A14 - A2S ' 

(52) 

They obey the identities 
It is thus convenient to break up the 6 X 6 tensor in 
this way: A2 = L2 + 1:~ + 1:~2 = 1:~ + y2 + A 2

, (53) 

[proved by expansion and use of Eq. (40)1. With 
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regard to the comutation rules, they fall into two 
families that may be written as vectors: 

P = (L, ~_, ~12)' 

(54) 

and 

P:P~ = A2 - P~ ± 2hPi' (60) 

If the eigenfunctions are labeled by (A2, Pi' Q;), we 
can write 

(61) Members of one group commute with those of the 
other, and within a group they behave much like 
ordinary angular momenta: Because of Eq. (59), we have 

[Pi' Q;] = [Pi' Qil = 0, 

[Pi, p;J = 2ihPk , [Qi' Q;J = 2ihQk' (55) 

if (ijk) is a cyclic permutation of (123). This is a 
case of a well-known property of the 4-dimensional 
rotation group (see, for instance, Biedenharn6

). All 
these operators, of course, commute with A2. By 
Eq. (53), 

A 
2 = :E P; = :E Q~. (56) 

i i 

Any set (A2, Pi' Q,.) is a suitable family of com­
muting operators for the angular part of the planar 
3-body problem. All the operators of P are invariant 
under the kinematic rotation, Eq. (10), while an 
ordinary spatial rotation through an angle 8 leaves 
only L invariant and changes the pair (~_, ~12) 

like a 2-vector rotated through the angle 28. All 
the operators of Q are invariant under the ordinary 
spatial rotation, but a kinematic rotation trans­
forms (Y, A) like a 2-vector by Eq. (45) and leaves 
~I invariant. The most symmetric representation 
therefore uses the family of operators (A2, L, ~t). 
However, the set (A2, L, mY) is also important since 
it generates the representation in which two angular 
momenta are uncoupled: 

m L l = m A12 = HL + mY), 

mL2 = mA45 = !(L - mY). (57) 

The representation (A2, L, mY) == (A2, mLl' mL2) is 
obviously most useful when two particles are inter­
acting and the third, m, is far away, while the 
(A2, L, ~,) representation is appropriate when 
all three are far apart or close together. 

Just as with ordinary angular momenta, the 
relations (55) and (56) lead us to define the raising 
and lowering operators associated with any diagonal 
operator from P or Q. Associated with Pi are 

P:t/;(A2
) pi, qi) 

= B:(A\Pi ± 1, qi)t/;(A2,Pi ± 2, q.), (62) 

where B is a normalizing factor to be evaluated 
presently. Applying one of these operators, say 
P:, repeatedly, we get a ladder of solutions that 
terminates at an upper bound, say Pi(max) = h, 
since A2 - P~ :::: ° by Eq. (56). Then 

P:t/;(A2
, A, qi) = 0, 

and 

A2 t/;(A\ A, q,) = (P~ + 2hPi + P~P:)t/;(A2, A, qi) 

= h2A(A + 2)t/;(A2
, A, qi)' (63) 

Similarly, applying p~ we arrive at a lowest value 
Pi (min) = -A', with A2 = h2A' (A' + 2). Since 
A2 commutes with Pi and P: we must have A = A'; 
and A must be an integer since the steps of the ladder 
are ±2h. The permissible values of Pi are thus even 
or odd along with A. 

To establish the value of the normalizing factor 
B it suffices to note that Eq. (60) when applied to 
any eigenfunction t/;(A, Pi, qi) must lead to an 
identity. We find that B is independent of q;, and 
its value is 

B(A, Pi + 1) = B:(A, Pi + 1, qi) 

= B~(A,Pi + 1, q;) 

= h[A(A + 2) - Pi(Pi + 2)r /2 

= 1i[(A - Pi)(A + Pi + 2)JI/2. (64) 

Symmetry shows that the same argument applies 
when Q~ is used to raise or lower q;. Thus, Pi and 
q; run independently through the even or odd 
integers from A to - A. For each value of A we get 
just W(A) = (A + 1)2 independent solutions. They 
are related to each other by 

Then we find 

(58) t/;CA, Pi ± 2, q;) = B-1CA, Pi ± 1)P:t/;(h, Pi, q;) 

and 

[p:,p~J = 4hP;, [P:,PiJ = =F 2hP:, (59) t/;(A, pi, q; ± 2) 

[P:, A2] = [P:, Q;] = 0, = B-1CA, q; ± I)Q:t/;CA,Pi, q;). (65) 
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For future use these can be rewritten to give the 
matrix elements of P:and Q~: 

(X, Pi ± 2, qj IP:I X, pi, qj) 

= 1i[(X =r P.)(X ± Pi + 2)r /2 

(X, Pi, q; ± 2 IQ~I A, pi, qi) 

For the (L, Y) representation, the coordinates 
(kX, kCP+, kCP-) are most convenient. (As long as only 
one value of k is under consideration, that subscript 
can be omitted on the coordinates and on k4>.) 

Ii a 
L = PI = -:-a ' 

~ 'P+ 

= 1i[(A =r qj)(A ± q; + 2)f/2. (66) P~ Ii ~2i(~+-~/4)( 2 a t2 a . a) 
I = -: e csc X - - co x - ± ~ -

which z acp_ acp+ ax, In Eq. (65) the arbitrary phase factor, 
might be assigned differently to each wave function, 
has been taken as unity in each case. This choice 
will prove convenient, and Eq. (65) defines the 
convention on relative phases that I shall regularly 
use. 

2. The Eigenfunctions 

To construct the eigenfunctions I shall copy the 
now standard procedure of H. P. Robertson8 for 
generating the spherical harmonics. 

For the (L, ~,) representation, the operators are 
best expressed in the coordinates (8, k4>, cp). The 
transformation is tedious but straightforward (see 
Appendix), and the result is 

Ji a 
L = PI = i acp , 

X (sec 28 a~4> + tan 28 a: ± i a~)' 
Ii a 

~, = QI = i a k4> ' 

Y ± ·A Ji =i2.4> 
t = ~e 

z 

Ii a 
Y = Q2 = -: -a- , 

~ cP-

Q* Ji *2 i" ( 2 a 
2 = -: e - csc X - -

z acp+ 
. 2 a . a) 

cot X acp_ ± ~ ax . 

A2 becomes 

2 1i2[ a ( . a) A = - csc 2x - sm 2x -
ax ax 

(69) 

( 
a2 a

2 a2 
)] + csc

2 
2x -a 2" - 2 cos 2x a a + -a 2" cp+ cp+ 'P- cp-

= _Ji
2 

csc 2x :x (sin 2x a:) 
+ CSC22X(L2 - 2 cos 2xLY + y2). (70) 

The construction of the eigenfunctions is simplified 
if the variable 8 in Eq. (67) is replaced by 

8' = 8 + 11"/4, (71) 

so that the operators become 

pa = lJ: e*i2"(csc 28' JL - cot 28' 3..-- ± i ~) 
1 i a4> acp a8' 

and 

X (sec 28 3..-- + tan 28 _a_ ± i -~). acp a k4> a8 
Q* Ji ",24>( 28' a 

(67) 1 = i e csc ~ acp- 28' a . a ) cot ~ aell ± ~ a8' . 

(72) 

In these coordinates, 

A2 = -lifsec 28 a~ (cos 28 a~) 

= _Ji2 sec 28 JL (cos 28 JL) ae a('".l 

+ sec
2 

28( t + 2 sin 28 f: L + L 2
). (68) 

The similarity with Eq. (31) will be reflected in the 
form of the eigenfunctions. 

Let us now write the eigenvalues of the various 
operators as 

L = lipl = Jim, 

Y = Jiq2 = lim_, 

LI = AI2 = Jiml = tJi(m + m_), 

(73) 

The eigenfunctions can be written as products of 
8 See E. U. Oondon and G. H. Shortley, The Theory of simple functions if the appropriate coordinates are 

Atomic Spectra (Oambridge University Press, New York, 
1935), p. 50 If. used in each case: 
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V;~,m,.(e', <P, cp) = (2'1fr1eim<pe,,<jof~,m,,(e'), 

V;~,m, .. -CX, cp+, cp-) 

= (211) -Ieim(<p+- ~/4)eim- <P-f~,m,m_(X) 

(74) 

The functions ix,p,. are connected by a recurrence 
relation deduced by combining Eq. (65) with Eq. 
(69) or (72): 

fX.p=2,.(e) = leA =r p)(A ± P + 2)r1l2 

X (q csc 2e - P cot 20 ± dlde)/x,p .• (e) 

= =r4[(A =r p)(A ± P + 2)r1/2 

X (did cos 2e)[sin~!(P-.) e 

X cos~t(p+q) eh,p,.(e)J. (75) 

The same relation applies if p and q are interchanged. 
The particular functionfm (e) can be found from 

the circumstance that P+ V;m = 0, which leads to 
the equation 

(did cos 2e)[cos-' efm(e)J = O. (76) 

I ts solution is 

/m(e) = (2A + 2)1/2 cosx e, (77) 

where the normalization is chosen so that 

1
~/2 

t 0 fm2
(x) sin 2x dx 

= t f~/4 Ixn2(e + 11"/4) cos 2e de = 1. (78) 
-11"/4 

Applying the lowering operation, Eq. (75), teA - p) 
times to /xn one gets 

[ 

2(A + I)! ]'/2 
(A ~ p)! (A t p)! 

X sin!(X-p) e cos;(X+P) 0, (79) 

and a similar expression for fA.A .•• In the same way 
the second index can be lowered teA - q) times, 
giving 

/x.p .• (e) = [2(A + l)(A ~ q)! (A t ~)! 
X e' ~ p)! e' -; p)!J sinA-!(p+a) e cos;(p+a) 0 

X §~) (_l)i[j! (~+ j)! 
,-0 2 

(80) 

Note that the upper limit of the summation is 
teA - q) if q > p-but this is automatically taken 
care of by the factorials. Likewise if p + q is negative 
the lower limit of the summation isj = - tep + q). 
From Eq. (80) some special cases can be quickly 
derived: 

lx, -x, -x = (-1)X[2(X + 1)]'/2 cosx e = (-l/Im( e), 

Ix,-u = IU.-A = [2(A + I)JII2 sinA e, 

Ix.p,. = IX,a,p; 

also, 

1000 = 2
1/2

, 

/111 = -/1,-1.-1 = 2 cos e, 
/1,-1,1 = /1,1,-' = 2 sin e, 

1222 = 12,-2,-2 = 6'/2 cos2 e, 
/2,0,2 = 12.2.0 = 2 X 31/2 sin e cos 0 

= -/2,0,-2 = -/2,-2,0, 

12.2,-2 = 12,-2.2 = 6
1/2 

sin
2 e, 

(81) 

(82) 

The functions iA,p,q are simply related to the 
Jacobi polynomials (compare references 1 and 2). 
As in the case of the ordinary spherical harmonic 
function eZm(O), they are not in general orthogonal 
to each other except when p and q are identical and 
only A changes. 

3. Coupling Coefficients 

The explicit form of the eigenfunctions in the 
representations (A2, L, ~t), (A2

, L, Y), and (A2
, 

L1I L 2) have been found, and Eq. (74) gives the 
connection between the latter two, which involves 
merely a change in phase. This section will be devoted 
to finding the coupling coefficients connecting the 
first two representations. 

The coupling coefficients a~(1)L, 8) are defined by 
the equation 

V;X,m" = L: V;A.m,m_aX(m_, 8); (83) 

the normalization of the wave functions requires 
that a~ be a unitary matrix. That ax is actually 
independent of m can be shown by operating on both 
sides of Eq. (83) by P,. 
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A connection between the rows of ah can now be - !ili[(X + m_)(X - m_ + 2)r/2ah(m_ - 2, 8). (92) 

found. Using Eq. (65) to obtain 1/;h.m,. from 1/;1., ... ,1. Starting with ah(X, 8), the successive coefficients 
we get have the recurrence relation in m_: 
1/;h,m" = (21i) -i1h' 

X 
[ 
(~)! ]!(Q-)t(h_"'" . 

( ) 

1 'Yh, ... ,h 

" X - 8 , 
1\. 2 . 

(84) 

Substituting on both sides from Eq. (83), multiplying 
by 1/;t,m,m-" and integrating, we find 

ax(m_,8) = (21i)-1(h_.'[ ((\]t 
" ~, 1\. 2 . 

X L: (X, m, m_ I(Q~)!(h' 1 X, m, m~)ah(m~, 8). 
m'-

(85) 

The matrix elements can be got by using the fact that 

Q-;' = Y - iA = Y - !i(Q~ + Q-;), (86) 

ah(m_ - 2,8) 

= i28[(X + m_)(X - m_ + 2)r 1l2ah(m_, 8) 

[
(X - m_)(X + m_ + 2)J1I2 

+ (X + m_)(X - m_ + 2) ah(m_ + 2,8). (93) 

For each value of 8, these are to be normalized by 

(94) 

leaving only a phase arbitrary. 
Similarly, starting from Eq. (87), we can find a 

recurrence relation in 8: 

( 2) 2m_ ( 
ah m_, 8 - = [(X + 8)(X _ 8 + 2)r/2 ah 1n_, 8) 

[
(X - 8)(X + 8 + 2)J1/2 

- (X + 8)(X - 8 + 2) ah(m_,8 + 2), (95) 

and the normalization 

and applying Eq. (28). I ~h lah( m_, 8) 12 = 1. (96) 

In just the same way one can define the inverse We can now write 
transformation by 

(87) 

but since aA is unitary, 

bh = ax1 = a~. (88) 

A connection between the columns of ah is deduced 
in the same way as Eq, (85): 

Here 

Q-; = A - i};, = -i[};, + !(Q~ - Q~)]. (90) 

where 
(97) 

(98) 

is real and satisfies equations of the form (95) in both 
m_ and 8, aA is a phase to be evaluated presently. 
The recurrence relation in 8 is satisfied if bh(m_, -8) 
= ±bA(m_, 8), but that in m_ requires that 

bh(m_, -8) = (-I)!(h-m-'bh(m_,8). (99) 

To get numerical values for the coefficients, it is 
convenient to write p. = !eX - 8), v = !eX - m_) 
and 

bh(m_,8) = bh(X - 2v, X - 2p.) 

= [(:)e)Th J/2 j (Xj v, p.). (100) 

j(X; v, p.) satisfy the relations 
To obtain the explicit form of aA we can use the fact 
that j(Xj v, p. + 1) 

Y = !(Q~ + Q~) and };, = !i(Q-; - Q~). (91) 

Applying the operator};, to Eq. (83), multiplying by and 
1/;! ... m-, and integrating, one finds 

lisaA(m_,8) = L: (Xmm_ I};,I Xm~)ah(m~, 8) 

X-2v·(x ) p..( = -,--) jv,p. - ,--}XjV,p. - 1) 
"-p. I\-p. 

± l(Xj v, p.) = 2A , (X _ )' 
.. -0 p.! (X - p.) v. v .. (101) 

m_' 
The following symmetry properties follow from Eq. 
(99) : 
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j(A; p" II) = j(A; II, p,) = (-l)'j(A; II, A - p,) 

= (-l)"j(A; A - II, p,) 

= (-I)~+"+'j(A; A - II, A - p,). 

One also can easily show that 

j(A; 11,0) = j(A; 0, p,) = 1, 
so that 

(102) 

j(A; II, A) = (A; A, II) = (-1)'. (103) 

For each value of A, the matrix of is can be con­
structed-taking advantage of the symmetry, the 
whole matrix follows from a single octant. The 
nth row or column is characterized by having the 
nth differences vanish. Here are explicit expressions 
for the first few rows: 

j(A; II, 0) 1 

j(A; II, 1) 1 _ 211 
A 

411 4112 
j(A; 11,2) = 1 - A-I + A(A _ 1) (104) 

A tabulation for small values of A is given in Table 1. 
It remains to fix the phase a. of Eq. (97). For 

this it suffices to ensure that Eq. (83) is satisfied 
for a single value of the coordinates.This may be 
taken at the point (b = p; h = t4 = h = 0), where 

X = 'P+ = 'P- = 0 

and e = 'P = <I> = 0, or 8' = 11'/4. (105) 

We need only take the case s 

y,.m(O, 0,11'/4) = (21T)-Ifm(1T/4) 

l = A, for which 

= (21T)-I(2A + 2)I/22-V2. (106) 

This is expanded in terms of the functions 

y,.X\m-(O, 0, 0) = (21T)-le-iAT/4fxxm_(0) 

= (21T)-Ie -;x .. /4fm(0) Om-.X 

= (21T)-Ie-·h/4(2A + 2)112 om-.A' (107) 

Introducing the expansion, Eq. (83), and the expres­
sions (97), (101), we find 

ax = O. (108) 

This completes the definition of the coupling coeffi­
cients. 

4. Conclusion 

The operators, eigenfunctions, and coupling 
coefficients have now been obtained for the sym­
metric representation of three particles in a plane 
and for an asymmetric representation involving a 

TABLE 1. The coefficients j(X;)1., v). 

1 2 3 

x = 0 0 1 

x = 1 

x = 2 

x = 3 

x = 4 

x = 5 

x = 6 

x = 7 

o 
1 

o 
1 
2 

o 
1 
2 
3 

o 
1 
2 
3 
4 

o 
1 
2 
3 
4 
5 

o 
1 
2 
3 
4 
5 
6 

o 
1 
2 
3 
4 
5 
6 
7 

o 1 
1 -1 

1 1 1 
1 0-1 
1 -1 1 

1 
1 i-i 
1 -i -i 
1 -1 1 

1 1 
1 ~ 

1 
o 

1 O-i 
1 -~ 0 
1 -1 1 

1 1 1 
1 ! t 
1 i-i 
1 -i -} 
1 -! ~ 
1 -1 1 

1 1 
1 ~ ! 

1 
-1 

1 
-1 

1 
-~ o 

! 
-1 

1 
-~-
-I-

i 
i 

-1 

1 
o 

1 ! --is -i 
1 0 -i 0 
1 -i --i. 
1 -~ i 
1 -1 1 

1 1 
1 t 
1 t 
1 t 
1 -t 
1 -t 
1 -t 
1 -1 

1 
t 

1 
~T 

-t 
-t 

1 
~T 

t 
1 

1 • o 
-1 

1 

4 

1 
-1 

1 
-1 

1 

5 

1 1 
-~ -1 

i 1 
i -1 

-~ 1 
1 -1 

1 
-i 
--I.-

1 • 

1 
-j 

1 
3 
o 

-Is -t 
-j i 

1 -1 

1 
-t 
-t 

-A 
3 

35 
-t 
-t 

1 

1 
-t 

-fi 
1 -., 

-t 
--fi 

3 -., 
-1 

6 7 

1 
-1 

1 
-1 

1 
-1 

1 

1 1 
-t -1 

t 1 
-t -1 
-t 1 

t -1 
-t 1 

1 -1 

preliminary coupling between two particles and a 
second coupling of the third to their center of mass. 
The index k, identifying the third particle, is an 
implied label on the coordinates, operators, eigen~ 
values, and eigenfunctions of the asymmetric 
representation. In the symmetric representation the 
diagonal operators (A2

, L, ~t) are independent of k, 
as are the coordinates e and 'P, but the coordinate 
k<I> depends on k through the additive relation of 
Eq. (22), 

k<I> = (3k; + ;<I>. (109) 

Thus the wave functions are not completely inde­
endent of k in the symmetric representation, but 
they depend on it only through a phase factor: 

ky,. •. m •• (e, 'P, k<I» = ei
•
fik

; jy,. •. m .• (e, 'P, ;<I». (110) 

Using the coupling coefficients aA(m_, s) and Eq. 
(110) the connection between the asymmetric 
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representations involving different values of k can be 
found. To begin with, 

kif;).,m,km-(.X, k'P+, k'P-) 

= L: kif;).,m,,(8, 'P, k<l»at(s, kln-) , (111) 

L: iif;).,m,;m-CX, j'P+, j'P_)a).(;rrL, s). (112) 
,m-

Hence 

kif;).,m,kmJkX, k'P+, k'P-) 

= L: ;if;).,m;m-CX, j'P+, j'P-)c).(;m_, km-) (113) 
jm_ 

where the coupling coefficients are 

(114) 

As we have seen, the wave functions have the 
same structure in all these representations, though 
the arguments of the functions and the quantum 
numbers are variously defined. The same functional 
form appears in still other problems involving three 
independent angular variables. For instance, the 
complete angular wave functions are closely related 
to Wigner's representation coefficients for the 
3-dimensional rotation group9, 10: 

.f, (8' <1» = [2(>- + 1)f/2 
'Y).,m., ,'P, 211' 

are three distinct parameterizations in 5-space, and 
six in 6-space. 
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APPENDIX 
REPRESENTATIONS OF THE OPERATORS 

1. The Symmetric Representation 

We seek the explicit representation of the six 
angular-momentum operators of Eq. (52) in terms 
of the symmetric coordinate system (p, 6, k<l>, 'P). The 
operators are initially described in Cartesian 
coordinates (~I' ~2' ~4' ~5) as linear combinations of the 

A,j = ~ (~i !~ - ~j a~J (AI) 

Let us write 

an = p, a2 (A2) 

Using the chain rule 

i h A,j (A3) 

(115) where 

The well-known connection between these functions 
and the symmetric rotor wavefunctions also comes 
to mind, and the operational derivation of Sec. B.2 
resembles the procedure used by Shafferll in the 
latter problem. It follows that operators raising and 
lowering the index >- can be constructed by the 
method of Shaffer and Louck. 12 

Functions of three angles with a different struct-
ure appear in other problems involving rotations in 
a 4-dimensional space. 13 Two different types of 
hyperspherical harmonics are possible in 4-space 
because there are two structurally different ways to 
set up angular parameters in that space. 6 The 
possibilities increase with higher dimensions: there 

9 E. P. 'Vigner, Group Theory (Academic Press Inc., New 
York, 1959), especially p. 167. 

10 I am indebted to Professor C. F. Curtiss for suggesting 
this connection. 

11 W. H. Shaffer, J. Mol. Spectroscopy 1, 69 (1957). 
12 W. H. Shaffer and J. D. Louck, J. Mol. Spectroscopy 3, 

123 (1959). 
13 V. Fock, Z. Physik 98, 145 (1935); A. Z. Dolginov, 

Soviet Ph:vs.~JETP 3, 589 (1956). 

(A4) 

The definition of the coordinates involves the 
quantities 

C1 = 4A = 2(~1~5 - ~2~') = / sin 26, 

Ca 

and 

kV = 2(~1~4 + ~2t5) = / cos 28 sin 2 k<l>, 

t = 2(~1~2 + ~'~5) = / cos 26 sin 2.." 

2 
P , 

(A5) 

Da = s = ~~ - ~; + ~~ - ~~ = / cos 28 cos 2'P. 

In addition, we shall ultimately need 

C, = 2(U5 + M4), 

c" = 2(~1~4 - ~2~5), 

C6 = 2(~1~2 - ~4~5), 

(A G) 
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(A7) [b k ;14 - bk ;2S] = [0, -Cs, 0], 

Differentiating Dl = p2 with respect to ~o and 
~;, it is obvious that Ao;o; = 0 identically, so the 
operators will only involve the angular coordinates, 
For k = 1, 2, 3 we have 

2:12 = AI5 + A24 , [ak;IS + ak;24] = [D3 , C6 , 0], 

[b k ;15 + bk ;24] = [0, -C4 , -C1], 

sin 2al = C1ID1, 

tan 2a2 = Cd D2, 

tan 2aa = Cal Da, 

so that we can differentiate and write 

(A8) 

(A9) 
(A16) 

aaklat = (Ak;iFk - Bk;iGk)l/ cos2 28, 

where 

A k:i = ! aCkla~i' 
and 

To evaluate the resulting expressions we need the 
(AID) identities 

The matrices A k;; and Bk;i are 

r -~4 -~2 

IA} = ~4 h ~I 

b ~1 h 

~2 ~4 

IB} = ~l ~2 -~4 

(All) 

('} ~2 , 

~4 

-~s . (A12) 

D4F2 + CSG2 = / Da, 

D4Fa + C6Ga = p2 D2 , 

C6 F2 + C4G2 = /Cg , 

C5Fa + C4Ga = /C2 • 

As a result, we find 

h a 
L = i acp , 

2:_ = ~ ( -sin 2cp a~ + sec 8 cos 2cp a~ r ~l -~2 

Now we can write 

~4 

('} 
-~s + tan 8 cos 2cp a:)' 

(A13) 2:12 = ~ ( cos 2cp a~ + sec 8 sin 2cp aaiJ> 

where 

ak;ii = ~iAk;; - ~iAk;i' 

bk:ii = tBk;i - ~iBk;i' (A14) 

The angular-momentum operators we want are of 
the form: 

Q = Aii ± Amn = (hli) I: [FJak;i; ± ak;mn) 
k 

Thus we have 

L = A12 + A45 , [ak;12 + ak;4S1 = [0,0, Da1, 

[b k ;12 + bk ;45] = [0,0, -CgL 

h a 
2:, - i aiJ> ' 

+ tan 8 sin 2cp a:)' 

y = ~ (-sin 2iJ> ~ + tan 20 cos 2iJ> ~ 
t ae aiJ> 

+ sec 28 cos 2iJ> a:)' 
A = ~ (cos 2iJ> ~ + tan 28 sin 2iJ> ~ 

t ae aiJ> 

+ sec 28 sin 2iJ> a~)' 

(A17) 

(AI8) 
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P = -"'" ± '"", _ ~ =i2" I - "'-'- '1, "'-'12 - . e '1, 

x (±i O~ + sec 26 o~ + tan 26 0:)' 

x (±i o~ + sec 26 :lP + tan 26 o~)· (AI 9) 

The coefficients appropriate to the angles lP+, lP­
follow by writing 

A=,i; = HAl,i; ± A2,H)' (A25) 

Taking the proper combinations of these one finds 
the contributions to the desired operators. These 
become 

Ii 0 L=--
i OlP+ ' 

2. The Asymmetric Representation Ii ( a . a 
~- = -: cos 2lP+ a + csc 2x sm 2lP+ a 

The operators are to be expressed in the angles '1, X lP-

lP+, lP-, X. It is convenient to start with the angular 
coordinates 

al = lPI = lP+ + lP-, az = lPz = lP+ - lP-, a3 = x, 

so that 

tan al = ~Z/~I' 

tan a2 = ~5/~4' 

(A20) 

tan a3 = (~: + ~;)/(~~ + ~;). (A2I) 

With this definition of the a's, Eqs. (AI), (A3), and 
(A4) are still valid. Now take 

YI = sin lPI cos lPz = Hsin 2lP+ + sin 2lP-) , 

Yz = cos lPI sin lP2 = Hsin 2lP+ - sin 2lP-) , 

Ya = cos lPl cos lP2 = H cos 2lP+ + cos 2lP-) , 

Y4 = sin lPI sin lP2 = H - cos 2lP+ + cos 2lP_)' (A22) 

and 

fl = tan x, f2 = cot x· (A23) 

Then 

AI,I2 = 1, A2,12 = A3,12 = 0, 

AI,45 = A3,45 = 0, A2,45 = 1, 

Al.14 = fIYI, A2,14 = -fZY2, Aa,I4 = Ya, 

AI,15 = fIY4, A2,15 = f2Y3, A3,15 = Y2, 

AI,24 = -fIY3, A2,24 = -fZY4, Aa,24 = YI, 

A1 • 25 = -fIYz, AZ.25 = f2YI, Aa,25 = Y4' (A24) 

- cot 2x sin 2lP+ o!J, 
1i('20 a ~12 = -: sm lP+;- - csc 2x cos 2<p+ a-
t uX lP-

+ cos 2x cos 2lP+ a!J, 
Y=~~ 

i OlP- ' 

A = ~ (-sin 2lP- ~ - cot 2x cos 2lP-~ 
'1, ax alP-

+ csc 2x cos 2lP- a!J, 
~t = ~ (cos 2lP- ",0 - cot 2x sin 2<p_ -!-

'1, uX ulP-

+ CSC 2x sin 2lP- o!J. (A26) 

From these it follows that 

P~ -"'" ±'''' _ ~ =i2(,,+_ .. /4) I - "'-'- '1,"'-'12 - . e '1, 

x (±i ~ + csc 2x ....E_ - cot 2x ~) 
ax alP- alP+ 

and 

x (±i 0: + csc 2x a!+ - cot 2x a!J· (A27) 
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Ordering Energy Levels of Interacting Spin Systems 
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The total spin S is a good quantum number in problems of interacting spins. We have shown that 
for rather general antiferromagnetic or ferrimagnetic Hamiltonians, which need not exhibit trans­
lational invariance, the lowest energy eigenvalue for each value of S [denoted E(S) 1 is ordered in a 
natural way. In antiferromagnetism, E(S + 1) > E(S) for S ~ O. In ferrimagnetism, E(S + 1) > 
E(S) for S ~ S, and in addition the ground state belongs to S :$ S, S is defined as follows: Let the maxi­
mum spin of the A sublattice be SA and of the B sublattice SB; then S == ISA - SBI. Antiferromag­
netism is treated as the special case of S = O. We also briefly discuss the structure of the lowest eigen­
functions in an external magnetic field. 

INTRODUCTION 

THE general Heisenberg Hamiltonian for inter­
acting spins on a lattice (in any number of 

dimensions) is 

(1) 

This describes theories of ferromagnetism, ferri­
magnetism, and antiferromagnetism, depending on 
the geometry of the lattice, the structure of the 
symmetric matrix J ii, and the magnitude of the 
intrinsic spins (which may vary from site to site). 
In fact, it is conceivable that these factors be such 
that the spin system displays a mixture of the three 
magnetic properties. But we shall restrict the dis­
cussion to ferrimagnetic arrays, of which a special 
case is anti ferromagnetism. 

We consider only those arrays for which an A and 
a B sublattice can be defined. The definition of these 
two sublattices is circular, and perhaps not unique, 
for the only requirement in defining them is that 
there exist a constant l 2: ° such that for all sites 
i(A) on one sublattice and i(B) on the other, 

and J,(A),i(B) 2: g2. (2) 

In general, there might be several ways to decom­
pose the lattice in such a way that (2) is obeyed, 
or there may be none. In the latter case, the system 
is not necessarily ferromagnetic, and only explicit 
solutions will reveal its properties. But if (2) is 
obeyed, we shall show that one is definitely dealing 
with ferrimagnetism or antiferromagnetism. Note 
that the number of sites in each sub lattice and the 
magnitude of the intrinsic spin on each site is 
irrevalent, so that only the topology of the lattice 
and the structure of J;; counts. Note also that for 
g = 0, and the A sublattice consisting of the nearest 

749 

neighbors to the sites on (i.e., intermeshing with) 
the B sublattice, the requirement (2) gives a tend­
ency for nearest neighbors to align antiparallel and 
next-nearest neighbors to align parallel, and there­
fore reduces to the usual definition of ferrimagnetism 
(when the spins are of unequal magnitude) and of 
antiferromagnetism (when all spins are equal). 

The intrinsic spin of an electron is 1/2, but we 
may be dealing with various species of magnetized 
atoms or nuclei, so let the intrinsic spin angular 
momentum on each site be Si' The maximum 
possible spin S A on the A sublattice is therefore 

(3a) 

and on the B sublattice 

(3b) 

Defining 

(3 c) 

we shall prove that the ground state of H belongs 
at most to total spin S = S. Moreover, if we denote 
by E(S) the lowest energy eigenvalue belonging to 
total spin S, then we shall also prove 

E(S + 1) > E(S) for all S 2: S, 

and (4) 

E(S) > E(s) for S < Sand l = 0. 

(Antiferromagnetism is when S = 0, and the ground 
state belongs to total spin zero.) This can be regarded 
either as a theorem in ferri- or antiferromagnetism, 
or as a proof that the conditions in Eq. (2) and above 
eliminate the possibility of ferromagnetism (insofar 
as it costs energy to raise the total spin value over 
and above its ground-state value, and that this 
ground-state value is far from the maximum per-
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missible value of SA + SB). It also indicates that a 
large class of apparently different Hamiltonians (1) 
have really a similar structure, as summarized in 
Eq. (4), and in the properties of the corresponding 
eigenfunctions which we shall find below. 

W. Marshall was the first to show I that the ground 
state of an antiferromagnet is a singlet; Elsewhere,2 
we have commented on and strengthened his proof. 
In the present work, we succeed in removing the 
requirement of translational invariance, and also 
apply the method to identify the excited states. 
The M-subspace arguments presented here were 
previously found useful in the classification of the 
states of an electron system, and have been used 
to disprove the possibility of ferromagnetism in 
linear chains of atoms in 8 states. 3 

We shall now restrict the discussion to the special 
case l = 0, until the end of the proof. 

M SUBSPACES 

With the help of the total spin operator 

8 == L: S, 

we can construct two operators which commute with 
each other and with H, namely, 8 2 and 8" which 
possess eigenvalues S(S + 1) and M, respectively. 
It is known from the theory of angular momentum 
that S 2:: IMI. From the rotational invariance of 
the Hamiltonian we infer the (2S + I)-fold degen­
eracy of each energy level belonging to S, one 
degenerate level for each value of M in the range 
-S :::; M :::; S. It therefore follows that every 
energy eigenvalue has a corresponding eigen­
function (representative) in the M = ° subspace 
of eigenfunctions; that every energy level except 
those belonging to S = ° has a representative in 
the M = 1 subspace; similarly for all except S = ° 
and S = 1 in the M = 2 subspace, and so forth. 
The theorem, Eq. (4), will be proved if we can show 
that the lowest energy in an M subspace belongs to 
S = M, for spin S + 1 also has a representative in 
that subspace and therefore E(S) < E(S + 1). If 
the ground state belongs to S = So (we still have 
to prove that So :5 S), we need only consider the 
subspaces of IMI 2:: So, for the ground states of the 
remaining subspaces will always belong to So. 

The mechanics of the proof are this: The ground 
state of H in an M subspace is not orthogonal to 
the ground state of a soluble Hamiltonian in the 
same subspace, and the latter is known to belong to 

1 W. Marshall, Proc. Roy. Soc. (London) A232, 48 (1955). 
2 E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16,407 (1961), 

particularly Appendix B. 
3 E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962). 

S = M for M 2:: S; therefore, so does the former. 
N ow let us go into more detail. 

PROOF 

In an M subspace, choose the basis set to consist 
of all distinct eigenfunctions of the s~ compatible 
with eigenvalue M. We denote each configuration 
in the set by rJ>., where a is an index which runs 
over all members of the set. Shortly, we shall 
specify a convenient choice of phase for each con­
figuration. But first, perform a canonical trans­
formation on H by letting 

8~(A) ~ +8~(A) (5) 

but leaving the spins on the B-sublattice invariant. 
In the new language, the Hamiltonian can be 
written as Ho + HI' where the diagonal part is 

Ho = 2 L: Ji;8~8;, 
and the nondiagonal part is 

(6) 

HI = - {L IJiil S:Si + H.c.}. (7) 

We recall that l of Eq. (2) is zero: the generalization 
for g2 > ° comes below. 

In a given state rJ>., S~ has eigenvalue mi' Choose 
the phase of rJ>. in the following manner: 

rJ>. = C(s~)S,+m,(s;)S,+m, ... (S;')SN+mNx, (8) 

where X is the state in which m, = -S" and C is a 
positive normalization constant. With this definition 
in mind, it is clear that if we define K~e to be 

(9) 

then 

K~. :5 0, or equivalently, K~a = -IK~.I. (10) 

The ground state in the M subspace is denoted 
1/1, belongs to the ground-state energy EM, and can 
be expanded in our complete set in terms of the 
amplitudes fe, 

(11) 

Since Ho is diagonal, denote its eigenvalues by ea, 

(12) 

and therefore the Schrodinger equation reads 

- L: IK~al'f~ + eat. = EMf.· (13) 
~ 

The varia,tional energy of any trial function exceeds 
EM, unless it is also a ground-state eigenfunction. 
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But 

vI' = I: Ifal cf>a (14) 

is a trial function with variational energy EM, and 
therefore 

- I: IK"allf,,1 + ea Ifal = EM Ifal. (15) 

Moreover, 

ea - EM > 0, for all a (16) 

(otherwise, some one cf>a would be the ground state, 
which is in general impossible.) Therefore, taking 
the absolute value of (ea - EM)fa as given be Eq. 
(11) and combining with Eq. (15), we obtain 

I(I: IK"al f,,)1 = I: IK"allf"l· (17) 

This is a contradiction unless 

f" 2:: 0 forall {3. (I 8) 

In general, we have a slightly stronger result, 

f" > 0, for all (3. (19) 

For, if some fa vaaished, then Eq. (15) would read: 

I: K"a If,,1 = 0, 

and by succeeding applications of the Hamiltonian, 
one could establish that all the amplitudes vanished, 
unless the Hamiltonian splits into sets of non­
interacting spins in which case only the weaker 
result (18) holds. Therefore, in general, all ampli­
tudes are positive and nonvanishing, and hence EM 
in nondegenerate. This last statement follows from 
the impossibility of constructing states orthogonal to 
1/1 without some changes of sign, and consequent 
violation of the ground-state property (19). 

Next consider the special Hamiltonian where 
J;(Ali{Al = J;(Bl;(Bl = 0 and J;(Al;(Bl = J, a 
positive constant. The eigenvalues are readily 
calculated. The lowest energy belonging to each 
spin is given by E(S), for S 2:: S, and the ground 
state belongs to S = S. 

E(S) = J{S(S + 1) - SA(SA + 1) 

- SB(SB + I)} for S 2:: s. (20) 

By the previous arguments, the ground-state 
eigenfunctions of this special Hamiltonian in a 
given M subspace satisfy Eq. (18) or (19) and are 
therefore not all orthogonal to the corresponding 
ground state of H. The special Hamiltonian has 
an S = M ground state in each M subspace, pro­
vided M 2:: S. Therefore, so does H and this com­
pletes the proof for l = O. 

When l > 0, we have proved the theorem (4) 
for H - lS2 and it is therefore true a fortiori for H. 
However, the lowest ground state no longer neces­
sarily belongs to S, but belongs to S ~ S. 

MAGNETIC FffiLD 

A magnetic field in the z direction but of arbitrary 
and variable amplitude B; modifies Ho but not HI, 
and therefore (18) or (19) are still valid for the 
ground state in an M subspace. The absolute ground 
state of the system is no longer necessarily in the 
M ~ S subspace nor is S a good quantum number 
in the presence of such a magnetic field. 
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A conjectured identity relating the statistical properties of two types of ensembles occurring in a 
statistical theory of the distribution of energy levels in nuclei and other complex systems is proved. 

I N a recent series of papers, I Dyson has introduced 
new types of statistical ensembles in an attempt 

to provide a mathematically tractable description 
of statistical properties of energy levels in nuclei 
and other complex systems. They possess the 
probability distribution functions 

PNiOI, ... , ON) 
N .-1 

CN~ II II lexp (iO") - exp (iO.)I~, (1) 
J'=l 10'=1 

(3 > 0 0':::; 0" .:::; 27r 

for N points {exp (iO")} distributed round the unit 
circle Iz\ = 1 in the complex z plane. Two important 
conjectures appear in the papers. The first gives 
the normalising constant CN~ in Eq. (1) to be 

CN~ = (27r)-N[r(1 + t(3)t/r(l + tN(3). (2) 

This is proved to hold for all integers N and real 
positive numbers (3 by Wilson2 and independently by 
the author. The second conjecture appears in part 
III of reference 1 and can be stated as the following 
theorem. 

Theorem. Let PNM(OI' ... , ON) be the probability 
distribution function describing the statistical prop­
erties of a set of N points {exp (iO.)} constructed 
as follows: Take two independent sets each con­
sisting of N points distributed according to the 
probability distribution function of Eq. (1) with 
(3 = 1 (Dyson's "orthogonal" ensemblel

), super­
impose the two sets on the unit circle, and pick out 
a set of N alternate points. Then 

PNM(OI, ..• , ON) = PN2(01, ••• , ON), (3) 

where P N2 is the distribution function of the "uni­
tary" ensemble. I 

IF. J. Dyson, J. Math. Phys. 3, 140 (1962); 3, 157 (1962); 
3, 166 (1962). . 

2 K. Wilson, J. Math. Phys. (to be pubhshed). 

Proof. From Eqs. (1) and (2) we obtain the 
probability of finding any point in the interval 
[aI, al + dal], any other point in the interval 
[a2. a2 + da2], etc., where al < a2 < ... < aN < 
al + 27r, to be 

N "-1 

N! CNI II II 2 sin [(a" - a.)/2] dal da2 .•. daN' 
",=1 )1=1 

(4) 

This is correctly normalised to unity over the domain 
o < al < a2 < ... < aN < 27r . We can now 
express N! PNM(OI, ... , ON) dOl ... dON as a sum 
of partial probabilities over configurations, a partic­
ular configuration being specified by the assignment 
of the 2N angles aI, ... , aN and (310 ••• , (3N from 
the orthogonal ensembles A and B into the 2N 
intervals I). = [0)., 0). + dO).] and G). = [0). + dO)., 0).+1] 
A = I, 2, ... , N, one in each interval. A typical 
contribution can be written 

X 14 sin [(a" - a.)/2] sin [((3,. - (3.)/2]1 

dOl' .. dON (5) 

in which, for a given integer m, 0 .:::; m .:::; N, we 
require: m of the angles a are identified with m of 
the angles <p, N - m of the angles (3 are identified 
with the remainder of the <p's, The remainder of the 
angles a and (3 are identified with the angles 0, in 
a one-to-one manner. For a given m, we then have 
(~)2 essentially different possible identifications and 
thus the same number of different contributions 
to P NM. Each of these terms must be positive, each 
being an independent contribution to a probability, 
so we may write Eq. (5) in the form 

(CNIN!)21
e
'+2r d<pN .. 'l e

, d<pI det [e ik,,,,] 
ON 0 1 

X det [eik,.B,] dOl ... dON (6) 

752 
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on using the identities 

N .-1 

II II (2 sin [(a. - a.)/2]) = i N(N+I)/2 det (e ik•a
,) 

p=l 1'=1 

k. = }.I - (N - 1)/2; }.I," = 1,2, .,. N. (7) 

We choose the ordering in the assignment of the 
angles a and {3 in such a manner as to make the 
integrand positive at some point in the region of 
integration. It is then positive over the whole region 
of integration and so we are justified in dropping the 
modulus signs. Let us define normal ordering as 
that in which the angles a (and likewise the angles (3) 
are identified successively as one of the angles 8 or 4> 
in increasing order of value. The integral in Eq. (6) 
may then be either positive or negative and we assert 
that its sign is given by the expression 

(8) 

in which P 8.<1> is the number of interchanges of the 
angles 8, 4> between the two determinants in the 
integrand required to transform a particular positive 
term, taken as standard, into the term under con­
sideration. To see this, consider the interchange of 
the integrations over the interval G of the unit circle 
in ensemble A with that over G' in ensemble B 
(Fig. 1). 

This interchange produces a new term in which 
the normal ordering has been destroyed, but it can 
be restored by interchanging columns within each 
determinant in the manner suggested by the solid 
arrows in Fig. 1. The essential point about the latter 
is that this permutation involves in all an odd number 
of interchanges of columns in the two determinants, 
as the variable in every interval appears either in 
the A or B determinants and there are always an 
odd number of intervals (and hence 8's and 4>'s) 
between two intervals of type G. The same argument 
holds, with the necessary changes made, for inter­
changes of the 8's. 

The next step is to sum the integrands of all the 
(~)2 terms when written in normal form with ap­
propriate sign factors included. To do this, we ex­
press the determinants in terms of alternating func­
tions and use the identity 

r:\ .. ·-<··········~)G. 
~ ~) 

c .... --.- --------------.-j 

FIG. 1. Interchange of 
two integrations over the 
intervals G and G' in a 
contribution to PNM(OI, 
... , ON}. 

X I1N(YI, •.. ,Y" X,+I, ... ,XN) 

= (~) I1N(x l , ••• ,XN) I1Jo;(YI, ... , YN), (9) 

in which 
N )1-1 

I1N(ZI, ... ,ZN) = IT IT (Z. - Z,) = det [z:-'] 
~=l 1-'=1 

and where the sum L is taken over all partitions of 
the x's and Y's between the arguments of the alter­
nating functions 11. This identity is an immediate 
consequence of Cauchy's result that any polynomial 
in N variables which is completely antisymmetric 
in the variables and contains powers of degree no 
higher than (N - 1) in each variable is a mUltiple 
of I1N • The sum of all the (~)2 terms then becomes 

N! CN1)218'+2~ d4>N .. 'l e
, d4>l(~) det [eik.e,] 

()N ()l 

det [e;k."'] d81 d82 '" d8N. (10) 

The integrals over the 4>'s can now be evaluated to 
give 

N 

N! P Nm(81 , ••• 8N ) = (N! CNI )2 L (~)2 
m=Q 

X (2Nr(1N~ !N)Y(det [e ik.e'])2.} 

= (21r)-N(det [e ik.e'])2 

= N! P N2 (81 , 82 , '" , 8N ) (11) 

as required. The factor ! in the second expression 
is introduced to express the probability that a 
particular alternate series of N points out of the 
two possible choices is taken. 

The author would like to thank Professor Dyson 
for valuable criticism of the proof, Professor Peierls 
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matical Physics of the University of Birmingham, 
and the Department of Scientific and Industrial 
Research for a Research Fellowship. 
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Published proofs that the Wulff construction yields the shape of minimum surface free-energy for 
a crystal of fixed volume (or area in the two-dimensional case) are all based on the tacit but unproven 
assumption that the equilibrium shape is convex. In the present work, this assumption is justified 
for the two-dimensional case by establishing from a special sequence of constructions that corre­
sponding to every non convex curve of line (surface) energy E, there is a convex curve enclosing the 
same area but having a line energy less than E. Therefore the two-dimensional equilibrium form 
must be convex and the existing proofs of the Wulff construction in two dimensions are vindicated; 
unfortunately the method of proof cannot be extended to three dimensions. 

ONE of the oldest problems in the field of 
capillarity is that of determining the equilib­

rium shape of a crystal whose surface free-energy 
is a specified function of orientation. One seeks the 
particular shape of a crystal of fixed volume that 
will minimize the free-energy integral 

E = J 'Y(o) ds, (1) 

where 'Y(o) is a specified continuous function of the 
unit surface normal o. The commonly accepted solu­
tion is given by Wulff's geometrical construction l car­
ried out on the three-dimensional polar plot of 'Y(o). 
All published proofs that the Wulff construction 
yields either a relative or an absolute minimum free­
energy, however, are based on the assumption that 
the equilibrium shape is convex. Many proofs assume 
at the outset that the equilibrium shape belongs to 
the class of convex polyhedra. 2

-
5 Proofs not falling 

in this category either are (1) restricted to two 
dimensions6

•
7 and utilize analytic expressions which 

are well defined (e.g., single valued) only if the 
shape is convex or (2) are based on an application 
of Brunn-Minkowski inequality for mixed volumes l 

which has been established for convex bodies only.8 

1 C. Herring, in Structure and Properties of Solid Surfaces, 
edited by C. S. Smith and R. Gomer (University of Chicago 
Press, Chicago, Illinois, 1953). 

2 H. Hilton, Mathematical Crystallography (Oxford Uni-
versity Press, New York, 1903). 

3 H. Liebmann, Z. Krist. 53, 171 (1914). 
4 M. von Laue, Z. Krist. 105, 124, (1943). 
6 A. Dinghas, Z. Krist. 105,304 (1944). 
6 L. D. Landau, Collection of Papers in Honor of Seventieth 

Birthday of A. F.Ioffe (Akademiia Nauk S.S.S.R., Moscow, 
U.S.S.R., 1950) p. 44. 

7 W. K. Burton, N. Cabrerra, and F. C. Frank, Phil. Trans. 
Roy. Soc. London 243, 351 (1951). 

8 T. Bonnesen and W. Fenchel, Theorie der Konvexen 
Korper (Verlag Julius Springer, Berlin, Germany, 1934), p. 88. 

The purpose of the present paper is to supply 
the missing step in the two-dimensional case by 
demonstrating from first principles that the curve 
describing the two-dimensional equilibrium shape 
must be convex. The procedure is to show that 
corresponding to any nonconvex curve, there is a 
convex curve having the same enclosed area A but a 
lower free-energy E [given by Eq. (1) interpreted 
as a line integral]. This is accomplished by (1) 
applying a sequence of unfolding operations to the 
original curve each of which leaves E constant, 
increases A, and also makes the curve approach 
convexity, then (2) at some nth stage replacing the 
unfolded curve by a bonafide convex curve at the 
maximum cost of an arbitrarily small increment 
in E and A (for large enough n), and finally (3) 
uniformly shrinking this convex curve until its area 
equals that of the original curve; the free energy 
of this final convex curve is then proved to be less 
than that of the original curve. The result justifies 
the use of the convexity assumption in two-dimen­
sional proofs, many of which are otherwise quite 
straightforward; unfortunately the method used to 
establish the proof does not seem to admit of 
extension to three dimensions. 

DEFINITION AND SIMPLE PROPERTIES OF 
THE UNFOLDING OPERATION 

Let the initial shape be specified by a closed, 
simply connected curve r, whose tangent is defined 
at all points except possibly for a finite number of 
cusp points. Let 8 be the angle made by the tangent 
with a fixed line, and s be the arc length along the 
curve measured from some origin on the curve; 
8(s) will then be a piecewise continuous function 
with jump discontinuities at the cusp points. We 

754 
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FIG. 1. Contact lines and the unfolding operation. 

suppose further that 8(s) is of bounded variation9 

and denote by e(s) the total variation of 8(s) 
between the origin s = 0 and s. e(s) is a monotoni­
cally increasing function of s with jump discon­
tinuities at the cusps; it may be thought of intuitively 
as a measure of the total twist of the tangent, dis­
regarding sign, between 0 and s; i.e., f~ \d8/ds\ ds = 
f~ \d8\, if d8/ds is defined. 

Define a contact line to be a line such that (1) no 
part of the curve lies on one of the two sides of the 
line and (2) the line has more than one point in 
common with the curve but does not entirely coincide 
with the curve between the two most widely sepa­
rated of the common points, hereafter called the 
contact points. Figure lea) shows three contact 
lines of a closed curve. A contact line is said to 
subtend that portion of the curve r lying between 
the two contact points (and within the rest of r 
and the contact line). It is easy to show that r has 
one or more contact lines if and only if it is not 
convex. 

We define an unfolding operation about a contact 
line as follows: A center point is located on the 
contact line midway between the two contact points 
[e.g., point 0 between A and B of Fig. l(b)]. The 
sub tended curve is then inverted through this center 
point. This is equivalent to a reflection through the 
contact line followed by a reflection through a line 
passing perpendicularly through its center. The five 
properties of the unfolding operation that we require 
are stated below. The proofs of (iii) and (iv) below 
are given or indicated; (i), (ii), and (v) are obvious 
and are stated without proof. 

(i) The length L of the curve is invariant. 
(ii) The area enclosed by r is increased, by un­

folding, by twice the area included between the 
contact line and the subtended curve. 

(iii) The value of the integral E = f 'Y(8) ds is 
invariant where we have rewritten Eq. (1) for the 
two-dimensional case and have changed the argu­
ment of 'Y from the unit normal to 8. The value of 
f 'Y(8) ds over the part of r not subtended by the 

9 E. C. Titchmarsh, The Theory oj Fu.w;tions (Oxford 
University Press, New York, 1939), p. 355, 2nd. Ed. 

contact line is obviously unaffected by unfolding. 
To prove the value over the subtended part is also 
unaffected, place a Cartesian frame with the x axis 
along the contact line and the origin at the center 
of inversion. Consider the original curve to be given 
parametrically in terms of s, i.e., xes), yes). Noting 
that 8 is determined by dy/dx = if/x, where the 
dot denotes differentiation with respect to s, we 
have for the free-energy the expression E = 
f:: 'Y[8(if/x)]W + if2)l/2 ds, where S2 - Sl is the total 
length of subtended curve. It is clear that this ex­
pression is invariant under the unfolding transforma­
tion xes) ~ -xes), yes) ~ -yes) for Sl ::; S ::; S2' 

(iv) The total variation of the entire curve eeL) 
is never increased by unfolding. Furthermore un­
folding never results in cusps with a greater \.:l8\ 
than those already present. To establish these state­
ments we first note that the total variation over 
any portion of the curve not including the contact 
points is unaffected by unfolding. To see what 
happens at these points, we examine the three 
possible cases illustrated in Fig. 2(a), (b), and (c). 

If 8(s) is continuous at both contact points, as 
shown in Fig. 2(a), the contact line coincides with 
the tangents at both points, before as well as after 
unfolding. Since the contact points therefore remain 
uncusped, they make no discrete contribution to 
the total variation eeL) which is thus unaffected 
by unfolding. 

If there is a cusp at one of the two contact points 
fA of Fig. 2(b)], unfolding will generally (a ,e 0) 
yield a cusp at both points (A and B). Each cusped 
point contributes the magnitude of its jump dis­
continuity \.:18\ to the total variation. In spite of 
the new cusp, Table I records what is easily seen 
from Fig. 2(b), namely, that the sum of \.:18\ for 
the two cusps and therefore the total variation re­
mains unaltered by unfolding. An obvious corollary 
is that neither cusp after unfolding has a bigger 
\.:18\ than the original one. 

Finally Fig. 2(c) shows, and Table I again records, 
the case in which both contact points are cusped. 
At A, \.:l8\ is initially a. + {3l and after unfolding 
becomes either al - {32 if al > {32, or {32 - al if 
{32 > al' Similarly at B, \.:l8\ is initially a2 + {32, 

and changes either to a2 - {3l if a2 > {3" or to {3l - a2 

if {3l > a2' Consider point A: if al > {32 then from 
the preceding inequalities the final value of \.:l8\ 
at A cannot be greater than the initial one. On the 
other hand if {32 > al then the final value of \.:l8\ 
at A cannot be greater than the initial value at B. 
A similar argument applies to point B. We conclude 
that unfolding cannot yield a greater \.:l8\. Also, 
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a 

b 

c 

FIG. 2. The three 
cusp configurations 
occurring during un­
folding. 

the expression a1 + {3, + a2 + (32 giving the initial 
sum of IAOI for the two cusps cannot increase when 
some of the signs become negative as required to 
give the final sum. Property (iv) is thus verified for 
all cases. 

In addition we note the following special conse­
quences of the unfolding operation: If the curve 
contains no cusps originally, it will contain none 
after unfolding; furthermore the total variation eeL) 
of the curve will remain constant so that the wiggles 
can never be removed. (Also the curvature can 
never be increased at all points where it is and 
remains defined.) If, on the other hand, cusps are 
originally present, their number may be increased 
by unfolding but neither the sum nor the largest 
of the corresponding I Alii's can increase. 

(v) It is clear, from (iv) , that the piecewise con­
tinuity and bounded variation of the function O(s), 
corresponding to r, are preserved by unfolding. 
Therefore the preceding properties (i)-(iv) hold true 
for any unfolding operation carried out on a curve 
r n derived from the original r by a sequence of n 
previous unfoldings. 

Theorem /-Subtended distance theorem. We define 
the distance between a contact line and its sub tended 
curve to be the maximum of the perpendicular 
distances of the points on the curve to the contact 
line; the points lying at this maximum distance will 
be called the d points of the subtended curve. We 
further define a d-unfolding to be an unfolding about 
a contact line whose subtended curve lies at a 
distance not exceeded by the distances between 
the other contact lines and their corresponding 
sub tended curves. 

Consider a curve r n derived from an original 
curve by n, d-unfoldings. Let d7 be the distance 
between the ith contact line and its subtended 
curve in r n , and suppose d~\f is the largest of the d7. 
Then we assert (Theorem I) that for a sufficiently 
large N either that rN is convex or that for n ~ N, 
d~ < ~ for arbitrarily small ~. To prove the theorem, 
suppose there are initially Co contact lines with cor­
responding distances d~, dg, ... d~ •. Perform the 
first d-unfolding about a contact line corresponding 
to d~ thereby obtaining r 1 • There will now be c, 
contact lines with the corresponding distances 
d~ d! ... d!, whose maximum will be d~. Continuing 
at this stage, and all succeeding stages, to perform 
d-unfoldings we will generate the array 

d~, dg, ... d~.; d~ 

d:, dL ... d!,; d~ 

d7, d;, ... d;.; d~ . 

If this array terminates for some (n + l)st row, 
there are no more contact lines and the curve r n 

must be convex. If not, there will be an infinite 
sequence of dM'S. 

Assume, contrary to Theorem I, that there is an 
infinite subsequence of dM'S with a lower bound to, 

i.e., d~, d~, d~, ... d~; ... > Eo. Denote by {3 
the angle which the outward normal to a contact 
line makes with a fixed direction so that each d 
corresponds to a {3. The infinite sequence of {3's, 
{3~, {3~, ... , corresponding to the infinite sequence 
of bounded d's, must have at least one point of 
accumulation {3o, since 0 ~ {3 ~ 27r. We proceed 
to show that the width10 of the curve along the 
direction of {3o will grow indefinitely as d-unfoldings 
proceed, thus contradicting the constancy of the 
perimeter (length L), necessitating rejection of the 
postulated bound to, and proving the theorem. 

Since {3o is a point of accumulation of the (3 se-

TABLE 1. The sum of 1Ll./I1 for the two Cusp configurations 
given in Fig. 2." 

Ll./I at A Ll./I at B 

Fig.2(b) Before unfolding ",+{3 0 
After unfolding '" -(3 

Fig. 2(c) Before unfolding "" + {3, "'2 + {32 
After unfolding "" - {32 "'2 - {3, 

a Note that !le is counted as positive when clockwise as figures are 
traced from left to right; a and ~ are non-negative. 

10 We use the customary definition of widthS as the dis­
tance between two parallel supporting lines that just sand­
wich the curve. 
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quence, there must be an infinite subsequence 
d~', d~', d~', '" of the bounded sequence d~, 
d~, .,. , whose terms correspond to contact lines 
lying within the range of orientations (30 - 1::.(3 to 
(30 + 1::.(3, where 1::.(3 is arbitrarily small. As unfolding 
proceeds, the particular unfolding steps correspond­
ing to the d~'. d~', which we term growth steps, 
will be reached consecutively. Let Fig. 3 represent 
the curve just before a growth step, with OP along 
(30, XY the (top) supporting line perpendicular to OP, 
and 0 itself a point of contact of the curve with 
the support line XY. Suppose the contact line 
corresponding to the growth step to be AB. It can­
not be any lower than shown or it would pass below 
o and hence inside the curve; it may be higher. 
Because of the fixed perimeter, the d point of the 
subtended curve cannot possibly lie to the right 
of line B' B whose perpendicular distance to 0 is 
L/2. As a result of unfolding, line AB is advanced 
parallel to itself to position A'B' by an amount of 
S > Eo. The corresponding advance in the support 
line XY and hence in the diameter of the figure 
along (30 would be smallest if the d point were on 
BB'. In this case (and since I I::. X I ::::; 1::.(3) the advance 
of XY would be at least (Eo - L/2 tan 1::.(3) cos 1::.{3. 
Clearly 1::.{3 may be chosen so small (and a contact 
line still guaranteed) that this quantity exceeds 
say Eo/2. Since the same choice of 1::.{3 will suffice 
for all growth steps, we see that each of the growth 
steps, that is, each of the unfoldings corresponding 
to a d~', d~', etc., increases the width of the curve 
along {30 by at least Eo/2. But none of the other 
unfoldings occurring between the growth steps can 
decrease the width along {30, or for that matter, 
along any other direction since curve r n is always 
included in the derived, unfolded curve r n + 1 • We 
conclude that after n steps where nEo/2 > L/2 
or n > L/ Eo, the diameter along {30 would exceed 
L/2 which is impossible. Therefore there can be no 
lower bound Eo of the dM sequence for d-unfoldings, 
and there must be an N such that d~, d;, .,. , 
d;n::::; d'lr < Eforn::::: N. 

Theorem II-Large angle curve theorem: The total 
length l of large angle (L.A.) curve, defined to be 
that subtended curve whose angle (J differs at all 

p 

FIG. 3. Growth of 
width along OP as a 
result of unfolding. 

y 

1---- - /:)«+' -
- p .. ,~"" .. Q 

--- ----r 

y(s.l·· .. ····£, V 
... f"ls68. 0 

A CONTACT LINE 

I~J~ 
b 

B 

d' I 

FIG. 4. The contribution to e of several configurations. 

pointsll from that of its corresponding contact line 
by a magnitude lying between 71"/2, and l::.(Jo, where 
o ::::; l::.(Jo < 71"/2, can be made arbitrarily small by 
a sufficiently large number n of d-unfoldings. Loosely 
speaking, the tangent of the subtended curve ap­
proaches arbitrarily closely that of its contact line. 12 

Suppose, on the contrary, that the length l of 
L.A. curve had a lower bound lo, independent of 
the number n of d-unfoldings. We proceed to show 
that the total variation e could then be made 
arbitrarily large by taking n large enough. The 
contradiction with property (4) of unfoldings show 
that l cannot have a lower bound. 

Let the Cn sub tended curves lie at the maximum 
distances of d7, d;, '" , d~n from their respective 
contact lines, have total lengths of L 1 , L2 , ••• , L e ., 

and contain lengths l1, l2' ... , leo of large angle 
curve. Consider a particular subtended curve with 
values d:, L i , and l •. Choose a Cartesian frame 
(see Fig. 4) whose x axis coincides with the contact 
line and whose positive y axis points toward the rn 
curve. Suppose s to be the arc length measured 
along the subtended curve from A (one contact 
point) and s' = if;(s) to be the length of L.A. curve 
lying between A and s. (Throughout this discussion, 
the reference line for (J is taken to be the contact 
line.) Let yes') be the y coordinate of the point on 
the L.A. curve corresponding to s'; it follows that 
o ::::; yes') ::::; d7, and also that Idy/ds'l ::::: sin l::.(Jo 
at all points at which the derivative is defined. 
Denote by yes) = f~ Isin (J(t) I dif;/dt dt the cumulative 
projected length of the L.A. curve on the y axis; 
it is a monotone increasing function of S.12. 

We assert that every increase in yes) by an 
amount of d7 + E', where E' is arbitrarily small, 
contributes at least 21::.(Jo to e. To establish this 
consider any arbitrary initial point s;, and suppose 

11 Points of jump discontinuities in 0(8) at which either 
value of 0 lies in the stated range are included in the L.A. 
curve. 

12 The same proof as that given here establishes the theorem 
for subtended curve (if any) whose angle differs from that of 
its corresponding contact line by a magnitUde lying between 
7r-t;;'Oo and 7r/2. Although it can probably be shown that such 
curve cannot be present after a sufficiently large number of 
d-unfoldings, the matter is of no importance to our main 
result. 

12. Define d",/dt = 1 at the cusps of ",Ct). 
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for definiteness that y(s') is an increasing function 
at si (i.e., at si, y either has a positive right-hand 
slope or a jump discontinuity to a larger value). Then 
if Y increases by at least d: + e' ;:::: [d~ - y(sDJ + E' 
either (1) dy/ds' must change sign at a point of 
continuity of y(s') (Le., a cusp) or (2) y(s') must 
undergo a jump discontinuity to a smaller value. 
If neither of these events occurred, so that dy/ds' 
remained positive and no downward jump dis­
continuity occurred, y would overshoot d7 which is 
impossible; that is, 

J'. d..p 
d7 + E ~ .1 Y = Isin () I ds ds 

8, 

8 ' \ d \ = r: d;' ds' = y(sD - y(s;) , 

or y(sD ;:::: y(sD + d; + E > d7. But either event, 
(1) or (2), increases e by at least 2 Mo. Thus the 
behavior of the L.A. portions (heavy lines) of the 
r n curve corresponding to the two events is shown 
in Fig. 4 in which the arrows show the direction of 
increasing s'; event (1) corresponds to configuration 
a with P and Q at the same level (equal y pro­
jections); event (2) corresponds to configuration a 
or b with Q lower than P, as actually shown.13 1\ ow 
it is easy to see that the total variation e of 8 
between two points14 of the r" curve is at least as 
great as that between the same two points along a 
substituted curve consisting merely of a straight 
line joining the two points. But since the tangent 
of the L.A. curve makes an angle of at least .180 

with the x axis, it follows from elementary geo­
metry that there is a contribution to e of at least 
2.180 from configurations a and b. Thus the con­
tribution from a is a + /3 which must be at least 
2.180 • whereas the contribution from b is the sum 
of two angles Jj and p each of which exceeds .180 , 

The same argument clearly applies if y is a decreas­
ing function at sf. Therefore the assertion is estab­
lished. 

In addition to the preceding contribution to e 
arising from the crowding of L.A. curve between 
the contact line and the d line there are two end 
contributions, each with a magnitude of at least 
.1()o and arising between a contact point and the 
nearest point (via the curve) of the L.A. curve. 
To see this we note that the variation between 

13 If point P should lie to the right of Q in either configu­
ration, the same argument as that given shows the minimum 
contribution to the variation is 1r/2 > 2A80• 

14 We use the term variation between two points here and 
later on to mean the total variation along the path connect­
ing the points including any discrete contributions arising 
from cusps at the end points. 

two points cannot be less than the magnitude of 
the difference of 8 at the two points (i.e., the values 
of () giving the largest difference in case either point 
is a cusp). At the end of the L.A. curve the magni­
tude of 8 is at least !:J.80 • At the contact point (e.g., 
A of Fig. 4), 8 must be set equal to 0 (and A will 
be the contact point of only one contact line) pro­
vided the left-hand slope of r" is zero; if not, A 
will be the contact point for two contact lines 
(possibly coincidental), but the variation between 
the two ends of L.A. curve on either side of A 
cannot be overestimated by still associating, on 
either side of A, a value of () = 0, and calculating 
the end contribution from each side separately, 
since any angle between the two contact lines them­
selves can only further raise the variation so esti­
mated. Hence, a minimum contribution to the 
variation of !:J.()o may be associated with each end 
of the L.A. portion of a given sub tended curve. 

We conclude that the contribution of the L.A. 
curve to the variation is at least 

2 .180 lint [Y(L,)/(d7 + E')] + ll, 

where int denotes the integral part of the bracket 
quotient. But, choosing e' to be sufficiently small so 
that this expression is greater than 2 .18o[Y(L.)/d71, 
and taking into account the relation 

L, d 
Y(L.) = i Is in ()! d~ ds 

. iLl dif; . 
;:::: sm .180 0 ds ds = sm .180 l,. 

we see that the minimum contribution to e made 
by the L.A. curve subtended by the ith contact 
line is sin (.1()0)li2.18o/d7. Adding the contribution 
from the L.A. curve subtended by each of the 
contact lines, we have 

en 1 
e > 2 .180 sin (.180) t1 d; 

;:::: 2 MJo sin (.180) it . 
where lo = L~:l l, is the postUlated lower bound 
for the total length of high angle curve. Now for 
any fixed .180 , d';.r may be made arbitrarily small 
and therefore e arbitrarily large by a sufficiently 
large number n of d-unfoldings. But this contradicts 
the existence of a fixed upper bound for e and 
proves that the total length of large angle curve 
cannot in fact have a finite lower bound 1o• but 
rather can be made arbitrarily small by selecting 
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n to be sufficiently large; furthermore, this is true 
no matter how small a value is chosen for Ilea. 

Theorem I I I -Replacement theorem. The possible 
elevation IlE in free energy E = f 'Y(e) ds occasioned 
by a replacement transformation, in which the n 
times d-unfolded curve r n is transformed into the 
convex curve r~ by replacing all subtended curves 
by their contact lines, can be made less than an 
arbitrarily small E by choosing n large enough. 

Let Ai denote the length of the contact line i, 
and 'Yi its energy. Then the energy change IlE upon 
replacement is 

IlE = Jrn' 'Y(e) ds - Jrn 'Y(e) ds 

= ~ 'Y;Ai - ~ 1. 'Y(e) ds < ~ 'YiAi 

On 

- L 'Y~Ai + l'YM 
,-=1 

where the integrals f i are taken over the curve 
subtended by the ith contact line in r n> l is the 
total length of the L.A. curve in all the intervals, 
'YM the largest value 'Y ever assumes, and 'Y~ the 
smallest value of 'Y(e) in an interval of ±Ileo about 
the ith contact line. The inequality comes about 
by replacing each of the integrals by the smaller 
value obtained, by (1) including only those contri­
butions of the integral coming from nonoverlapping 
curve, defined to be that subtended curve whose 
x projection (on the contact line) does not coincide 
with that of any other portion of the subtended 
curve, and (2) by using the following inequality for 
each of the integrals (dropping the subscript i) 

J 'Y(e) ds ~ 1. 'Y(e) ds + f 'Y* ds > 1. 'Y(e) ds 
LA SA LA 

where LA and SA denote large angle and small 
angle parts of the given sub tended curve, X denotes 
the x projection, and the subscripted l's are the 
corresponding lengths. Now since 'Y is uniformly 
continuous (continuous at all points of a closed in­
terval), Ilea may be chosen so small that for all 
e 1'Y(e) - 'Y(e + M)I < E/2L for all IMI < Ilea­
But the arguments of 'Y i and 'Y~ differ by less than 
Mo; therefore I'Y i - 'Y~ I < E/2L for all i. For this 
particular Ilea; Theorem III guarantees that n may 
be chosen so large that l < E/2'YM' Therefore, 
substituting into the previous expression for IlE we 
obtain for sufficiently large n, IlE < E/2 + E/2 < E 
for arbitrarily small E. 

Theorem IV-The convex equilibrium form theorem. 
Corresponding to any nonconvex curve with a 
certain value of E = f 'Y(e) ds, there is always a 
convex curve r" of the same area but a lower value 
of E. Therefore, the equilibrium form must be 
convex. 

We proceed to give a construction that will con­
vert a nonconvex curve r to a convex curve r" 
with the same area but a lower energy E. If the 
curve is not convex there will be at least one contact 
line. Unfolding about this line will increase the area 
from an initial value A, to A + IlA, where IlA 
is some finite quantity. This is then followed by the 
number (if any) of d-unfoldings required to permit 
a replacement transformation to a curve r', guaran­
teed by Theorem III, that gives IlE < E(l - k,)/k" 
where kl is a fraction given by k~ = A/(A + IlA). 
Since these unfoldings (if any) leave E fixed and 
increase A, we have for the convex curve r', the 
relations 

E' = E + till < E/kl 

A' ~ A + IlA. 

The curve r' is now subjected to a uniform con­
traction to a curve r" such that all radius vectors 
from some origin are multiplied by a constant 
k < 1; since r" = kr' and ds" = kds', we have 

A" f r,,2 de 2 

A'- = f r'2 de = k 

§..~~ _ f 'Y ds'~ - k 
E' - J 'Y ds' -

The constant k is chosen so that the final area is 
equal to the original area, i.e., 

A = A" = k2 A' 

Combining this equation with the preceding ones, 
we see that k2 has the fractional upper bound 

k2 
::; A/(A + IlA) = k~ 

The corresponding change in energy from the 
original value is 

IlE T = E" - E' + E' - E = E'(k - 1) + IlE 

::; E'(k1 - 1) + IlE < (E/kl)(kl - 1) 

+ E(l - lc1)/k1 = 0 

Therefore IlET IS negative and Theorem IV is 
established. 
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Closed formulas are given for Tr J a pJ ~qJ-y r ••• where a, {j, 'Y ••• are equal to + 1, 0, or -1, and p, 
q, r are non-negative integers for which p + q + r + ... :$ 9. The procedures used in evaluating the 
traces are described. In order to facilitate numerical evaluation from existing tables, simple relation­
ships are given between traces in the spherical basis and traces in the Cartesian basis. The use of 
these tables for evaluating expectation values of certain operators is discussed in relation to other 
methods based on the coupling and recoupling theory of angular momentum. 

I N a previous paper' we gave formulas and tables 
for evaluating traces of products of the Cartesian 

components of angular momentum operators. As 
an application we cited the calculation of thermo­
dynamic properties of paramagnetic salts from the 
spin-Hamiltonian X. One needs to evaluate quan­
tities such as (OXn) == (Tr OXn)/(Tr 1). In this 
article we give similar formulas for the angular 
momentum components in the spherical basis. This 
additional compilation seemed to be useful for 
certain problems in paramagnetic resonance and 
relaxation. For example, in calculating the moments 
of an absorption line where the width is due to 
dipolar and exchange interactions, it is necessary 
to write these parts of the Hamiltonian in terms of 
the raising and lowering operators.2 In this way 
the Hamiltonian can be divided into parts corre­
sponding to zero, one, and two spin flips, and the 
terms which contribute to the moments of the dif­
ferent order Zeeman lines can be separated. It did 
not seem obvious, moreover, how to obtain the 
traces in one representation from those in the other. 
Before going on to discuss our method of evaluation 
of the traces wc should like to discuss briefly two 
alternative approaches to the evaluation of quan­
tities such as (OXn). 

The first of these has been given by Rose,3 who 
obtained formulas for quantities defined as 

Zn == Tr (T::T:: ... T::) 

in terms of 3-j and 6-j symbols. The T~ are com­
ponents of tensor operators. Although the formulas 

* National Academy of Sciences, National Research Coun­
cil, Resident Research Associate. This note should alEo have 
appeared in reference 1. 

1 E. Ambler, J. C. Eisenstein, and J. F. Schooley, J. Math. 
Phys. 3, 118 (1962). 

2 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948); A. Wright, 
ibid. 76, 1826 (1949); A. G. Anderson, ibid. 115, 863 (1959); 
Hung Cheng, ibid. 124, 1359 (1961). 

3 M. E. Rose, J. Math. Phys. 3, 409 (1962). 

for Zn form a discernible pattern, they are not 
particularly simple to evaluate when the product 
contains more than a few components, say for 
n > 3. The method does have special advantages, 
however, when the spin-Hamiltonian represents an 
S-state ion. Consider, for example, the case of the 
Gd3

+ ion in GdCIa,4 where S = 7/2 and X contains 
powers of S up to the sixth. A straightforward 
expansion of (OXn) in terms of the components of 
S leads rapidly to products with a large number of 
factors. We note, howcver, that the spin-Hamil­
tonian may be written in terms of tensor operators, 

x = G 2: (-)"T~(H)T~q(S) + A20T~(S) 
q 

+ A40T~(S) + A 60Tg(S) + A6dT~(S) + T~6(S) I 
so that powers of X fall naturally into the form 
discussed by Rose. This procedure of writing the 
spin-Hamiltonian in terms of tensor operators can 
be carried out for any value of S, of course, but 
there is no great advantage in doing so for the 
majority of cases of interest where S is small, so 
that, in general, the use of tables of the kind we 
have prepared is more economical. 

Another method5 that has been suggested for 
handling the problem is to write the spin-Hamil­
tonian in terms of the scalar products of vectors, 
thus, 

X = guf3HzSz + g1-{3(HxSx + H.S.) 

+ D[S; - is(S + l)J + ASJ. + B(SJ. + S.I.) 

becomes 

X = (gil - g1-){3(H·e)(S·e) + g1-{3(H· S) + D[(S·e)2 

- is(S + l)J + (A - B)(S.e)(I·e) + BS·I, 

where e is a unit vector along the z axis defined by 

• C. A. Hutchison, Jr., B. R. Judd, and D. F. D. Pope, 
Proc. Phys. Soc. (London) B70, 514 (1957). 

i See, e.g., U. Fano, Revs. Modern Phys. 29, 74 (1957). 
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the crystal. In a power series expansion, terms 
containing a number of scalar products will appear, 
and the aim is to use recoupling procedures6 to 
pick out tensors of rank zero, since the trace is 
nonvanishing only for the zero rank tensors. Thus, 
for example, we proceed with (8·e)2 as follows: 

2 

(8·e)2 = (8·e)(8·e) = L: [SxS](k).[exerk
) 

k~O 

Tr (S·e)2 = Tr {[S x SrO)[e x erO)} 

(28 + 1)!(8 II[S x SrO) II 8)/ V3 

t8(8 + 1)(28 + 1). 

This method is not simple to apply when the 
number of factors in the product is large, so a 
tabulation of the traces of products of angular 
momentum operators should be useful. 

We shall take the operators in the spherical 
basis to be J ~ = J x ± iJ v and J z. Their products, 
like the Cartesian products, can all be derived from 
Tr J:n where n is a positive integer. In the systematic 
derivation one starts with the nonzero traces J! and 
J +J _, goes on to J +J.J _ and then to the traces 
which contain four angular momentum operators. 
All possible traces are evaluated for a given number 
of operators. The number of operators is then 
increased by one and the process repeated. 

It is necessary to use the commutation relations 

and 

Note also that J +J _ and J _J + are functions only 
of Jz. 

When the angular momentum operators are 
expressed in a Cartesian basis the number of traces 
which it is necessary to evaluate can be drastically 
reduced by using symmetry arguments. When the 
operators are expressed in the spherical basis 
symmetry arguments can again be used to reduce 
the labor of calculation. The reduction in the number 
of traces is not so great, however, because the 
number of symmetry operations is smaller. Thus, 
in the simple case of the second-order traces it is 
necessary to evaluate only J~ for the Cartesian basis 

• U. Fano and G. Racah, Irreducible Tensorial Sets (Aca­
demic Press Inc., New York, 1959). 

but for the spherical basis both J! and J J _ are 
needed. 

The rules we have used to simplify the calcula­
tions are the following: 

(1) The trace is zero unless the number of raising 
operators is the same as the number of lowering 
operators. 

(2) If J + is substituted for J _ and J _ for J + the 
trace is unchanged when J z occurs an even number 
of times, and changes only in sign when J z occurs 
an odd number of times. A rotation through 180 0 

about a line in the xy plane which bisects the angle 
between the x and y axes in the first quadrant sends 
x into y, y into x, and z into -z. Hence J + goes 
into iJ _, J _ into -iJ + and J. into -Jz. Since J + 
and J _ occur the same number of times in all non­
vanishing traces rule (2) clearly holds. 

(3) If the order of the operators is reversed the 
trace changes sign if J. occurs an odd number of 
times and is unchanged if J z occurs an even number 
of times. Consider some arbitrary product such as 
J+J~JJz ... J_. We have 

since all the traces we obtain here are real. 

since only diagonal elements are involved in the 
trace. 

by the well known rule for hermitian conjugate of 
a product of operators. 

Tr(J~ ... J:J:J~J:) = Tr(J+ ... JJjJ-) 

Tr (J+ ... JJjJ-) = ±Tr(J- ... JJJ-J+) 

by rule (2). Consequently, rule (3) holds. 
It follows immediately that the symmetrical 

products such as J +J -JJ _J + have zero trace. 
A useful application of the tables which follow is 

in the evaluation of Rose's quantity Zn when the rank 
of the statistical operators occurring therein is not 
too large. For example, we have 

where T! and ak are defined in Table IV of reference 
1. One easily finds, by using results given in Table I, 
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that given in Table II. In the table the following abbre­
viations are used. 

-5(4P + 4J + 21)(J - l)(J + 2) 
7J(J + 1)(2J + 1)(2J - 1)(2J + 3) 

This example illustrates one advantage of using 
our table; namely, that the traces are obtained as 
quotients of simple polynomials in J. 

A = J(J + 1)(2J + 1), 

B = (2J - 1)(2J + 3), 

C = (J - l)(J + 2), 

D = (2J - 3)(2J + 5), 

E = (J - 2)(J + 3). Table I gives analytical expressions for traces of 
products of angular momentum operators in the 
spherical basis. Since it is frequently tedious to 
evaluate these expressions for particular values of 
J, Table I also gives the traces in the Cartesian 
basis which yield the same analytical expressions. 
The traces in the spherical basis can then be readily 
evaluated by referring to Table III of reference l. 

These quantities are related to the normalization 
constants given in Table IV of reference 1 in the 
following way: 

Finally, further to facilitate the calculations, the 
values of frequently occurring numerical factors are 

al = va A-!, 

a2 = V5 (AB)-l, 

as = V7(ABC)-!, 

a4 = !(ABCD)-!. 

TABLE 1. Traces of products of angular momentum operators. 

Tr J! = fA 

A = J(J + 1)(2J + 1), B = (2J - 1)(2J + 3), C = (J - l)(J + 2), 
D = (2J - 3)(2J + 5) and E = (J - 2)(J + 3). 

Tr J J _ = fA = 2 Tr J! 

Tr JJ.J- = -fA = 2iTr J.J,J. 

Tr J! = (l/15)A(3J2 + 3J - 1) 

Tr J J!J _ = (1/15)A(2J2 + 2J + 1) = 2 Tr J;J~ 

Tr JJ.J-J. = (2/15)AC = 2 Tr J.J,J.J. 

Tr J!J: = (2/15)AB = 2 Tr (J;J! + J.J ,J.J.) 

Tr J J _J J _ = (4/15)A(2P + 2J + 1) = 8 Tr J;J! 

Tr J J!J _ = -(1/15)A(3J2 + 3J - 1) = 2i Tr J!J,J. 

Tr J+J!J_J. = -(1/15)AC = 2i Tr J;J,J.J. 

Tr J!J.J: = -(2/15)AB = 4i Tr (J;J,J. + J;J,J.J.) 

TrJJ.J-JJ- = -(2/15)A(2J2 + 2J + 1) = 4iTr(J;J,J. - J;J,J.J.) 

Tr J: = (I/21)A(3r + 6J3 
- 3J + 1) 

Tr J J!J _ = (1/I05)A(6J 4 + 12J3 + 14J2 + 8J - 5) = 2 Tr J!J~ 

Tr J J=J -l. = (1/105)AC(6J 2 + 6J - 1) = 2 Tr J!J,J.J. 

Tr J +J;J _J! = (2/105)AC(3J 2 + 3J - 4) = 2 Tr J;J,J;J. 

Tr J!J!J: = (2/I05)AB(J2 + J + 5) = 4 Tr (J!J; - J;J:J;) 

Tr J!J.J _J.J - = (2/105)ABC = 2 Tr (J;J,J;J. + J;J,J.J,J.) 
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TABLE I. Continued 
A = J(J + 1)(2J + 1), B = (2J - 1)(2J + 3), C = (J - 1)(J + 2), 

D = (2J - 3)(2J + 5) and E = (J - 2)(J + 3). 

Tr J!J-l~J. = (2/105)AB(J 2 + J - 9) 

= 4 Tr (J~J;J! + JJ.J-l.J.J.) 

Tr J!J _J!J _ = (2/105)ABC 

Tr JJ.JJj.J- = (2/105)ABC 

Tr J J~J _J +J _ = (2/105)A(4J 4 + 8J3 + 14J2 + lOJ - 1) 

= 4 Tr (J~J;J! + J;J.J!J.) 

Tr JJ.J_JJ.J- = (2/105)A(4r + 8J3 + 14J2 + lOJ - 1) 

Tr JJ.Jj+Jj. = (8/105)AC(J2 + J + 1) = 8Tr J!J.J.J.J. 

Tr J!J: = (4/35)ABC 

Tr J!J _J +J~ = (4/105)AB(3J 2 + 3J + 1) = 8 Tr (J;J: + J;J.J.J y ) 

Tr J+Jj+J_JJ_ = (4/105)A(12J4 + 24r + 21r + 9J + 4) 

= 8 Tr (J: - 3J!J.J.J.) 

Tr J +J~J _ = -(1/21)A(3r + 6r - 3J + 1) = 2i Tr J!J.J. 

Tr J J!J _J. = -(1/105)AC(9r + 9J - 5) = 2i Tr J!J.J.J. 

Tr J +J!J j! = -(1/105)AC(3r + 3J - 4) = 2i Tr J!J.J!J. 

Tr J!J~J: = -(2/105)AB(3J2 + 3J + 1) 

= 4i Tr (J!J.J. - J!J.J;J.) 

Tr J!J~J _J.J _ = -(4/105)ABC = 8i Tr (J;J;J.J.J. - J;J.J.J.J.J y ) 

Tr J!J;J:J. = -(2/105)AB(J2 + J - 9) 

= 4i Tr (J;J;J.J.J. + J~J!J.J.J') 
Tr J!J.Jj!J_ = -(2/105)ABC 

Tr JJ.J+J.Jj.J- = -(2/105)ABC 

Tr J+J~J_J+J_ = -(2/105)A(6J4 + 12J3 + 14r + 8J - 5) 

= 4i Tr (J;J.J. - J;J.JJ.) 

Tr J+J!J_JJ.J- = -(2/105)A(6r + 12J3 + 14J2 + 8J - 5) 

Tr J+J;J_J+J_J. = -(4/105)AC(J2 + J + 1) 

= 4i Tr (-J;J.J.J.J.J. + J.J.J.J.J.J.J.) 

Tr J+J.J-JJ.J_J. = -(4/105)AC(J2 + J + 1) 

Tr J!J.J: = -(6/35)ABC 

Tr J!J _J.J: = -(2/35)ABC 

Tr J!J.J j +J~ = -(2/105)AB(5J2 + 5J + 4) 

= 8i Tr (J!J.J.J. - J;J!J.J.J.) 

Tr J!J.rj +J _ = -(2/15)AB(J2 + J) 

= 8i Tr (J;J.J. - J;J.J.J.J.J.) 
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TABLE 1. Continued 
A = J(J + 1)(2J + 1), B = (2J - 1)(2J + 3), C = (J - l)(J + 2), 

D = (2J - 3)(2J + 5) and E = (J - 2)(J + 3). 

Tr J!J-lJ-JJ_ = (2/105)ABC 

Tr J!J _JJ +f: = (2/105)ABC 

Tr JJJ-lJ-JJ- = -(2/105)A(12J4 + 24r + 21r + 9J + 4) 

= 8i Tr (J;J.J. - 3J:J~JJ.) 

Tr J~ = (1/45)A(5r + 15J5 + 5r - 15r - J2 + 9J - 3) 

Tr J +J~J _ = (1/315)A(lOr + 30r + 55r + 60r - 23J2 
- 48J + 21) = 2 Tr J~J! 

Tr JJ:J_J. = (1/315)AC(lOr + 20J3 + lOr - 3) 

= 2 Tr J!J.JJ. 

Tr J J!J _J; = (I/315)AC(lOJ 4 + 20J3 
- 17J2 - 27J + 12) 

Tr J J~J _J! = (2/315)AC(5r + lOr - 13J2 
- 18J + 12) 

= 2 Tr J;J.J!J. 

Tr J!J!J: = (2/315)AB(r + 2J3 + 14r + 13J - 9) 

= 4 Tr (J:J~ - J;J.JxJ!JJ.) 

Tr J!J!J -lJ _ = (2/315)ABC(r + J + 6) 

= 4 Tr (J!J.JJ.J. + J;J.JJJJ.) 

Tr J!J!J:J. = (2/315)AB(r + 2J3 
- 4r - 5J - 15) 

= 4 Tr (J!J.J;J. - J;J~J;J;) 

Tr J!J!J _J!J _ = (2/315)ABC(J 2 + J) 

= 4 Tr (J!J.J;J. - JJ.JJ.JxJ.JJ.) 

Tr J!J;J -lJ -l. = (2/315)ABCE 

= 4 Tr (J;J.J;J. - J!J~JJ;) 

Tr J!J;J:J; = (2/315)AB(J4 + 2J3 
- lOJ2 

- llJ + 39) 

= 4 Tr (J;J.JJ;J.J. + J;J.JJ;JJ.) 

Tr J!JJ _J!J _ = (2/315)ABC(J2 + J - 3) 

= 4 Tr (J;J.JJJ.JJ. + JJ.JJ.JJJJ.) 

Tr J!JJ _J!J _J. = (2/315)ABCE 

Tr J!J_J!J_ = (2/315)ABC(J2 + J - 3) 

Tr J+JJJ!J-lJ- = (2/315)ABC(J2 + J) 

Tr JJJ+JJ-J!J_ = (2/315)ABC(J2 + J - 3) 

Tr J+JJJJ-JJ-l. = (2/315)ABCE 

Tr JJJ+J-l!J_ = (2/315)ABC(J 2 + J - 3) 

Tr JJ;JJ_J;J_ = (2/315)ABC(r + J - 3) 
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TABI.E I. Continued 
A = J(J + 1)(2J + 1), B = (2J - 1)(2J + 3), C = (J - l)(J + 2), 

D = (2J - 3)(2J + 5) and E = (J - 2)(J + 3), 

Tr J +J!J _J J _ = (2/315)A(2J2 + 2J - 1)(2r + 4J3 + 14J2 + 12J + 3) 

= 4 Tr (J!J: - J!J.J.J.JJ 

Tr J+J!J_J+J.J_ = (2/315)A(2r + 2J - 1)(2J4 + 4J3 + 14r + 12J + 3) 

Tr J J!J j J j. = (4/315)AC(2r + 4P + 8J2 + 6J - 3) 

= 4 Tr (J;J~J.J.J.J. + J!J.J.J.J.J.Jy ) 

Tr J J!J j +J!J _ = (2/315)A(2J2 + 2J - 1)(2J4 + 4J3 + 14r + 12J + 3) 

Tr J +J!J j J.J _J. = (4/315)AC(2J4 + 4J3 + 8r + 6J - 3) 

Tr J J;J _J J j; = (4/315)AC(2r + 4P + 5r + 3J - 6) 

= 8 Tr J!J:J.J!J. 

Tr J J;J j.J J _J. = (4/315)AC(2J4 + 4J3 + 5J2 + 3J - 6) 

Tr J+J.Jj.JJ.Jjz = (4/315)AC(2J4 + 4J3 + 5r + 3J - 6) 

Tr J!J!J~ = (2/315)ABC(2J2 + 2J + 33) 

= 8 Tr (5J;J:J.J.J.J. + 5J!J!J! - 9J.J.J.J.J.J.J.J. - 9J.J.J.J.J.J.J.Jz) 

Tr J!J.J j.J': = (4/315)ABC(P + J + 3) 

= 8 Tr (J;J.J.J:J.J. - J!J!J!) 

Tr J!J.J:J.J _ = (2/315)ABC(2P + 2J - 21) 

= 8 Tr (J;J.J.J.J.J.Jz + J;J.J.J.J.J.Jz) 

Tr J!JzJ~Jz = (4/315)ABC(J 2 + J - 24) 

= -8 Tr (2J!J.J!J. - J;J~J;J! - J;J!J.J:) 

Tr J!J j!J: = (2/315)ABC(2J 2 + 2J - 3) 

= 8 Tr (J;J!J.J.Jz + J;J~J.J;Jz) 
Tr J!J _JzJ _J.J _ = (4/315)ABCE 

Tr J!J.JJj.J: = (2/315)ABC(2J2 + 2J - 3) 

Tr J!J.J J:J.J _ = (4/315)ABCE 

Tr J!J;J j +J: = (2/315)AB(2J 2 + 2J + 3)(r + J + 4) 

= 8 Tr (J;J~J.J; + J;J~J.J.J.Jz) 
Tr J!J!J:J J _ = (2/315)AB(2J 2 + 2J - 1)(J2 + J + 12) 

= 8 Tr (J!J.J;J y + J!J.J.J.J.J.J.) 

Tr J!J.J _J J.J: = (2/315)AB(2J2 + 2J + 3)(r + J + 4) 

Tr J!J.JjJj.J- = (4/315)ABC(J2 + J) 

Tr J!J.J_J+J:Jz = (2/315)AB(2J4 + 4J3 
- 17J2 - 19J - 12) 

= 8 Tr (J;J.J.J.J.J. + J;J.J.J.J.Jz) 

Tr J!J.J _JzJ J: = (4/315)ABC(J2 + J) 

Tr J!J.J _J.J _J J _ = (4/315)ABC(J2 + J + 3) 
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TABLE 1. Continued 
A = J(J + 1)(2J + 1), B = (2J - 1)(2J + 3), C = (J - l)(J + 2), 

D = (2J - 3)(2J + 5) and E = (J - 2)(J + 3), 

Tr J!J,f-lJJ- = (4/315)ABC(J2 + J + 3) 

Tr J!JjJJjJ- = (4/315)ABC(J 2 + J) 

Tr J!J_JJj;J_ = (2/315)ABC(2J2 + 2J + 3) 

= S Tr (J!J,JJ,J, + J!J,J,JJ,J,) 

Tr J!J_JJJjJ- = (2/315)ABC(2J2 + 2J + 3) 

Tr J!Jj;JJ~ = (2/315)ABC(2J2 + 2J + 3) 

Tr J+JJJjJ-J,J- = (2/315)ABC(2J2 + 2J + 3) 

Tr J +J;J j J _J +J _ = (2/315)A(Sr + 24r + 50r + 60J3 + 53J2 + 27 J - 12) 

= S Tr (3J!J,JJJ,J, - J;J,JJ,J,J,) 

Tr J JJ j +JJ j J _ = (2/315)A(SJ6 + 24J5 + 50r + 60P + 53J2 + 27 J - 12) 

Tr J+JJjJjJj, = (4/315)AC(4r + SJ3 + 7J2 + 3J + 6) 

= S Tr (3J!J,J,JJJJy - J!J,JJJ,J,) 

Tr JJJjJ-J.JJ- = (4/315)AC(4r + SJ 3 + 7J 2 + 3J + 6) 

Tr J!J~ = (S/315)ABCD 

= 32 Tr (J;J;JJ,JJy + J!J~J;) 
Tr J!JjJ~ = (4/315)ABC(SJ 2 + SJ - 3) 

= 16 Tr (J!J,J;Jy + J;J~JJy) 
Tr J!J~JJ~ = (S/315)ABC(4J2 + 4J + 3) 

= 16 Tr (J!J,JJy + J;J;JJ;) 

Tr J!J j +J j J~ = (4/315)AB(J2 + J)(SJ 2 + SJ + 5) 

= 16 Tr (J!J; + J;J;JJ,JJy) 

Tr J:J j +J~J J _ = (S/315)AB(4r + SJ3 + 5J2 + J + 3) 

= 16 Tr (J!J,J!Jy + J!J~J,Jy + J!J;JJ,JJy + J!J;J;) 

Tr J!J~J!J~ = (S/315)AB(4J4 + SJ3 + 5J2 + J + 3) 

Tr J+JjJjJjJ- = (16/315)A(f + J + l)(Sr + 16J3 + SJ2 + 3) 

= 32 Tr (J!J;J,J; + 3J,J,JJ,J,JJJ,) 

Tr JJ;J _ = -(1/45)A(5r + 15J5 + 5J4 
- 15J3 

- J2 + 9J - 3) 

= 2i Tr J:J,J, 

Tr J+J~Jj, = -(1/315)AC(25r + 50J3 
- 20J2 

- 45J + 21) 

= 2i Tr J~J,JJz 

Tr J+J;Jj; = -(1/105)AC(5J' + lOJ3 
- lOJ2 - 15J + 8) 

= 2i Tr J;J,J!J z 

Tr J+J!J_J; = -(1/315)AC(5J' + lOJ3 
- 13J2 

- ISJ + 12) 

= 2i Tr J!J,J!.Tz 
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TABLE I. Continued 
A = J(J + 1)(2J + 1), B = (2J - 1)(2J + 3), C = (J - 1)(J + 2), 

D = (2J - 3)(2J + 5) and E = (J - 2)(J + 3). 

Tr J!J!J: = -(2/315)AB(5J4 + lOJ3 + lOJ2 + 5J - 9) 

= 4i Tr (J!J!J. + J!J!JJy) 

Tr J!J!JjJ_ = -(8/315)ABC(J2 + J) 

= 4i Tr (J!J!JJ. + J;J!JJJy) 

Tr J!J!J:J. = -(2/105)AB(r + 2J3 
- 6J2 - 7J + 3) 

= 4i Tr (J!J;JJJ. + J!J~JJJ') 
Tr J!J!Jj;J_ = -(2/105)ABC2 

= 4i Tr (J!J;JJ~Jy - J!JJ!JJJJy) 

Tr J!J~JjJj. = -(4/315)ABCE 

= 8i Tr (J;J!JJy + J!JJJJJJ.) 

Tr J!J!J:J; = -(2/315)AB(r + 2r - lOr - llJ + 39) 

= 4i Tr (J!J!J!JJ. + J;J~J!JJy) 
Tr J!J;J j~J _ = -(4/315)ABC(J2 + J - 3) 

= 8i Tr (J!J!JJ;Jy - J;JJ!J.) 

Tr J!J;J_J;J_J. = -(2/315)ABCE 

Tr J!JJj!J_ = -(2/315)ABC(J2 + J - 3) 

Tr JJJJ~JjJ- = -(2/105)ABC2 

Tr JJJJ;Jj;J- = -(4/315)ABC(J2 + J - 3) 

Tr JJJ+J;JjJj. = -(2/315)ABCE 

Tr JJJJJ-J!J- = -(2/315)ABC(J2 + J - 3) 

Tr JJ;J+JJ_J;J_ = -(2/315)ABC(r + J - 3) 

Tr JJ!J_J+J_ = -(2/315)A(lOr + 30r + 55r + 60J3 
- 23r - 48J + 21) 

= 4i Tr (J;J!J. - J;J;JJ.) 

Tr JJ!JjJJ- = -(2/315)A(lOJ6 + 30r + 55r + 60J3 
- 23J2 - 48J + 21) 

Tr JJ!J_JJj. = -(2/105)AC(2r + 4r + 7J2 + 5J - 4) 

= -4i Tr (J!J;JJJy + J!JJ;JJy) 

Tr JJ~J_JJ!J_ = -(2/315)A(lOr + 30r + 55r + 60J3 
- 23r - 48J + 21) 

Tr JJ!J_JJJ-J. = -(2/105)AC(2r + 4J3 + 7J2 + 5J - 4) 

Tr J+J~J_JJj; = -(2/315)AC(2r + 4J3 + 5r + 3J - 6) 

= 4i Tr (J!JJ!J;J. - J!J;JJ!Jy ) 

Tr JJ!J_JJJj. = -(2/315)AC(2r + 4J3 + 5J2 + 3J - 6) 

Tr J+J;J_J+J;J_J. = -(2/105)AC(2r + 4J3 + 7r + 5J - 4) 

Tr JJ!J-JJJj! = -(2/315)AC(2J4 + 4r + 5J2 + 3J - 6) 
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TABLE 1. Continued 
A = J(J + 1)(2J + 1), B = (2J - 1)(2J + 3), C = (J - l)(J + 2), 

D = (2J - 3)(2J + 5) and E = (J - 2)(J + 3), 

Tr J +J;J j,J +J,J j. = -(2/315)AC(2J4 + 4J3 + 5J2 + 3J - 6) 

Tr J!J;,J~ = -(2/35)ABC(,J2 + J + 3) 

= 72i Tr (J!.1.J!J.J,Jy - JJ.JJ,J.JJ,J.J.) 

Tr J!J~J_J.J~ = -(2/315)ABC(7J2 + 7J - 6) 

= 8i Tr (J:J~JJ.J. + J;J.J,JJ.J,J.Jz) 

Tr J!.1;J~J,J _ = -(2/315)ABC(5,J2 + 5J - 39) 

= 8i Tr (3J;J~J,J. + 3J!J.JJ.JJ,Jy - ,J!J.J;J.J,Jy + JJ.JJ.J.JJ,J.,J.) 

Tr J!J;J~J, = -(2/105)ABC(J2 + J - 24) 

= 24i Tr (J!,JeJJ,JJy + J!Jul;J.,J,J.) 

Tr J!J,J _J!J~ = -(2/315)ABC(5J2 + 5J - 12) 

= 8i Tr (J!J.JJ~JJ. - J.JulJ,JJ,J.J.J.) 

Tr J!J.J_J.Jj.J- = -(2/105)ABCE 

Tr J!J,J j,J~J. = -(2/315)ABC(J2 + J - 24) 

Tr J!J,J~J;J_ = -(2/315)ABC(J2 + J + 3) 

Tr J!J j!J~ = -(2/105)ABC(J2 + J - 3) 

TrJ!J_J;Jj,J_ = -(2/315)ABCE 

Tr J!,J,J J,J j,J~ = -(2/315)ABC(5J2 + 5J - 12) 

Tr J!J,J J.J~J,J _ = -(2/105)ABCE 

Tr J!J,J +J j;J~ = -(2/105)ABC(J2 + J - 3) 

Tr J!J,JJj,J_J,J- = -(2/315)ABCE 

Tr J!J.J J j,J~J. = (2/315)ABC(.]" + J + 3) 

Tr J! J.J + J~J;J _ = (2/315) ABCE 

Tr J!J~JjJ~ = -(2/315)AB(J2 + J)(5J2 + 5J + 11) 

= 8i Tr V;J!J. - J!J~J;J.Jz) 

Tr J!J~J~JJ_ = -(2/315)AB(7r + 14.]" + 26J2 + 19J - 24) 

= 8i Tr (J:J~J. - J.J.JJ,JJ.J.Jul.) 

TrJ!J;.1jJ,J~ = -(2/315)AB(J2 + J)(5J2 + 5J + 11) 

Tr J!J;JjJ_J,J_ = -(2/105)ABC(J2 + J + 2) 

= 8i Tr (J;Jy.1;J~J. - .1;J~J;JJ.J.) 

Tr J!J;JjJ~J. = -(2/315)AB(J4 + 2J3 
- 10.12 - 11,J - 24) 

= 8i Tr (-J;J.J;J.JJ,Jy + J;J.J!,J.JJ,Jy) 

Tr J!J;J_J,JJ~ = -(2/105)ABC(J2 + J + 2) 

Tr J!J;J_J,Jj+J_ = -(2/315)ABC(5J2 + 5J + 6) 

= 8i Tr (.1!J.Jx<l .,JJ.J. + J;J.J!JJ.J,Jy) 
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TABLE 1. Continued 
A = J(J + 1)(2J + 1), B = (2J - 1)(2J + 3), C = (J - 1)(J + 2), 

D = (2J - 3)(2J + 5) and E = (J - 2)(J + 3). 

Tr J!J;J~J J.J _ = - (2/315)ABC(5J2 + 5J + 6) 

Tr J!J!J~JJjz = -(2/105)AB(J2 + J)(J2 + J - 9) 

= Si Tr (J;J~J.J.Jy + J;J~J;JJz) 
Tr J!J.J-JJ,J_J.J- = -(2/105)ABC(J2 + J + 2) 

Tr J!J.J-JJ.J~J. = -(2/315)AB(r + 2J3 
- lOJ2 - llJ - 24) 

Tr J!J.J_JJ_J;J_ = -(2/315)ABC(J2 + J + 6) 

= Si Tr ( - J!J;J;J. + J!J;J!J J.) 

Tr J!J.J-JJ-J.Jj. = (2/315)ABCE 

Tr J!J.J-J.JJ.J~ = -(2/105)ABC(r + J + 2) 

Tr J!J.Jj.JJ-J.J- = -(2/315)ABC(J2 + J + 6) 

Tr J!J.J j.J +J _2J. = (2/315)ABCE 

Tr J!J.Jj;J+J~ = -(2/315)ABC(J2 + J + 6) 

Tr J!J.Jj;JjJ_ = -(2/105)ABC(r + J) 

Tr J!J.J-J.JjJ.J- = -(2/105)ABC(r + J) 

Tr J!J.J-J.J-J.JJ- = -(2/315)ABCE 

Tr J!J.J~J +J;J _ = -(2/105)ABC(J2 + J) 

Tr J!JjJ;J_J.J_ = -(2/105)ABC(J2 + J + 2) 

Tr J!J _J J.J _J;J _ = -(2/315)ABC(J2 + J + 6) 

Tr J!J _J J _J!J _ = (2/315)ABC(J2 + J - 3) 

Tr J!J_J.JJ.J-J.J- = -(2/315)ABC(r + J + 6) 

Tr J!Jj.JJ-J;J- = (2/315)ABC(J2 + J - 3) 

Tr J!J j;J J _J.J _ = (2/315)ABC(J2 + J - 3) 

Tr J!J j!J J~ = (2/315)ABC(r + J - 3) 

Tr JJ.JJ.JjJ-J.J- = -(2/315)ABC(J2 + J + 6) 

Tr J+J.JJ.J-J.JjJ- = -(2/105)ABC(J2 + J) 

Tr JJ.JJj+J_J;J- = (2/315)ABC(J2 + J - 3) 

Tr JJ.JJ-J.JJj.J- = (2/315)ABC(J2 + J - 3) 

Tr JJ!J_JJ-JJ- = -(2/105)A(4r + 12r + 19r + lSr + 16J2 + 9J - S) 

= Si Tr (J!J!J! - 3J!JyJ;JJ.Jy) 

Tr JJ;J_JJ.Jj+J- = -(2/105)A(4r + 12J3 + 19r + lSJ3 + 16J2 + 9J - S) 

Tr J+J;J_J+JjJ_J. = -(2/315)AC(4J4 + SJ3 + 7J2 + 3J + 6) 

= Si Tr (3J!JJ;JJ.Ju - JzJJ.,J.JzJJ.JJ.) 

Tr JJ;J_JJj.JJ- = -(2/315)AC(4r + Sr + 7r + 3J + 6) 

Tr J+J.J_JJ.LJJ.J- = -(2/105)A(4r + 12r + 19r + lSr + 16r + 9J - S) 



                                                                                                                                    

770 AMBLER, EISENSTEIN, AND SCHOOLEY 

TABLE 1. Continued 
A = .1(.1 + 1)(2.1 + 1), B = (2.1 - 1)(2.1 + 3), C = (.I - 1)(.1 + 2), 

D = (2.1 - 3)(2.1 + 5) and E = (.I - 2)(.1 + 3). 

Tr JJJjJJjJj, = -(2/315)AC(4r + SJ3 + 7J" + 3J + 6) 

Tr JJJjJjJJjz = -(2/315)AC(4J4 + SJ3 + 7J2 + 3J + 6) 

Tr J~JJ~ = -(16/315)ABCD 

= 64i Tr (J;JJJJJy + J!J:JJJ;Jy) 

Tr J~J _JJ~ = -(S/315)ABCD 

Tr J!JJjJ~ = -(4/315)ABC(1OJ" + lOJ + 3) 

= lSi Tr (J!J~JJz + J!J~JJJy) + 16i Tr (J!JJ!JJJy - JJJJJJJJJ.) 

Tr J!JJ:J+J: = -(4/105)ABC(4J2 + 4J + 3) 

= 4Si Tr (J~J;JJy + J!J~J;J,) 
Tr J!JJ~J+J_ = -(S/315)ABC(7J2 + 7J - 6) 

= -16i Tr (J:JJJz + J:J~J!J,) 
Tr J!J_JJjJ: = -(S/3l5)ABC(J2 + J + 3) 

Tr J!Jj+J:JJ_ = (4/105)ABC(2J 2 + 2J - 3) 

= -16i Tr (J!J!JJJz + J!JJJJJJJJ 

Tr J!J _JJ J~ = -(S/315)ABC(J2 + J + 3) 

Tr J!JjJjJ: = -(4/315)ABC(4J2 + 4J + 3) 

Tr J!J:J+JJ: = -(4/315)ABC(4J2 + 4J + 3) 

'Ir J!JJJ:JJ: = -(4/315)ABC(4J2 + 4J + 3) 

Tr f:JJjJ_JJ: = -(S/105)AB(r + 2J3 + 2J2 + J + 1) 

= 16i Tr (J!J!J~ + J!JJJJJJ,) 

Tr J!JJ--f+J:JJ_ = -(S/315)AB(4J4 + sP + 5J2 + J + 3) 

= 16i 'Ir (J;J~J, + J!J~JJJJz + 2JJJJJJJJJ, - 2J!JJ!JJJJ 

Tr J!JJ:'J!J: = -(S/315)AB(4J4 + SJ3 + 5J" + J + 3) 

Tr J!J,J:'JJ_JJ_ = -(S/315)AB(5J4 + lOJ 3 + 7J2 + 2J - 3) 

= l6i Tr (J:J~Jz + J!J:JJJJ,) 

Tr J!JjJJjJ: = -(S/105)AB(J4 + 2J3 + 2J2 + J + 1) 

Tr J!JjJjJ_JJ_ = (4/315)ABC(2J 2+ 2J + 3) 

Tr J!J-JJ-JJJ: = (4/315)ABC(2J2 + 2J + 3) 

Tr J!Jj+J:J+JJ_ = 0 

Tr J+JJ-JJjJj+J_ = -(S/315)A(J2 + J + 1)(SJ4 + 16P + SJ 2 + 3) 

= Si Tr (2J:J~J, - 7J!JJJJJJJ, - 7J!JJJJJJJy) 
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TABLE II. Numerical values of A, AB, AC, ABC, ABCD, and ABCE for J = Y2 to 10. 

J A AB AC ABC ABCD ABCE 

1/2 3/2 0 -3' 5/23 0 0 0 
1 2'3 2'3'5 0 0 0 0 
3/2 3'5 2"3"5 3'5'7/2' 32'5' 7 0 -34.5'7/22 

2 2'3'5 2'3"5' 7 23 '3'5 23 '3"5.7 23 '34 '5'7 0 
5/2 3'5'7/2 24 '3'5'7 34.5'7/23 22. 34 • 5' 7 24 '34 '5"7 34. 5' 7'11 
3 2"3' 7 2"33 '5'7 23 '3' 5' 7 23 '33 '5"7 23 • 34 • 5" 7'11 24 '34 '5"7 
7/2 2' 3" 7 23 '33 '5'7 3"5'7'11/2 2'33 '5'.7'11 25. 34. 52. 7'11 34 '52'7'11'13/2 
4 2"3"5 2"32'5' 7'11 23 '34 '5 23 '34 '5'7'11 23 '34 '5'.7'11'13 24 '34 '5'7"11 
9/2 3"5'11/2 24 '33 '5'11 3" 5' 7 '11' 13/23 2"33 '5'7'11'13 24 '34 '5'7"11'13 34 '5 3 '7'11'13 
5 2'3'5'11 2'33 • 5'11'13 23 '3'5'7'11 23 '33 '5'7'11'13 23 • 34 • 5" 7" 11' 13 26 '34 '5'7'11'13 

11/2 3'11'13 2"3'5·7'11'13 34 '5'11'13/22 34 • 5" 7' 11 . 13 27 '34 '5"7'11'13 34. 52. 7"11'13 '17/22 

6 2'3'7'13 2'3"5'7'11'13 24 '3'5.7'13 24 '3" 5" 7 '11'13 24 '34 '5"7'11'13'17 26 '34 '52'7'11'13 
13/2 3'5'7'13/2 25 • 3" 5· 7 '13 3'5'7'11'13'17/23 23 '3"5.7'11'13'17 25 • 34 • 52.7. 11 . 13' 17 2'34 '5.7'11'13'17'19 

7 23 '3'5. 7 23 • 3' 5' 7· 13' 17 24.34 '5' 7 24 • 34 • 5' 7' 13' 17 24 '34 '5'7'11'13'17'19 25 '34.5 3 '7'13'17 
15/2 2"3'5'17 24 '33 '5'7'17 3'5'13'17'19 2"33 '5' 7'13'17'19 26 '34 '52'7'13'17'19 34. 5' 7' '11' 13' 17 '19 

8 23 '3"17 23 '33 '5'7'19 24 • 3" 5' 7' 1 7 24 '33 '5"7'17'19 24.34 • 5" 7"13'17'19 25 '34 '52 '7'11'17'19 
17/2 3"17'19/2 25 • 32 • 5 . 17 . 19 34.5'7'17'19/23 23 • 34 • 5" 7' 1 7· 19 25 • 34 • 52. 7' '11' 1 7' 19 2' 34 • 5" 7'13'17'19' 23 

9 2'3"5'19 2'33 '5'7'17'19 24 '3" 5'11'19 24 '33 '5'7'11'17'19 24 '34 '52'7'11'17'19'23 26 • 34 • 5' 7" 11 . 17' 19 
19/2 3'5'7'19 22'33 '5'7'11'19 3'5'7'17'19'23/2' 33 '5'7'11'17'19'23 27 '34 '5.7'11'17'19'23 34 '54 • 7'11'17'19' 23/22 

10 2'3'5'7'11 2'3'5'7'11'19'23 23 '34 '5.7'11 23 '34 '5.7'11'19'23 23 '34 '53 '7'11'17'19'23 26 '34 '5'7'11'13'19'23 
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A derivation is given of the Baker-Hausdorff formula for 
z = In eZe. where x and yare noncommuting operators. 
This result is then used to obtain an expression for z in the 
case that X = p' + Q' and y = aP + {3Q, where P and Q are 

I. INTRODUCTION 

ONE of the major differences between classical 
and quantum physics is the fundamental role 

assigned to noncommuting operators in quantum 
physics. The algebra of noncommuting operators 
has been studied by mathematicians in many con­
texts over the years and many results have been 
derived which are of potential value in quantum 
mechanical and statistical mechanical calculations. 
It is our purpose in the present paper to summarize 

* This research was supported in part by the U. S. Air 
Force through the Air Force Office of Scientific Research, 
Air Research and Development Command under Contract 
# AF 18(600)1315. 

two operators whose commutator [P,Q] = c is a c number. 
With the aid of this result a very simple derivation of the 
expression for the intensity of x rays scattered by the thermal 
vibrations of a crystal is presented. 

some of the theory as it has so far been developed, 
and to derive by its use a result for particular 
operators which is then used to calculate the 
quantum mechanical intensity factor for the scat­
tering of x rays by crystal lattices. The theory that 
will be presented is abstracted mainly from the 
excellent review paper by Magnus,l a following 
paper by Finklestein,2 and the original and quite 
readable paper by Hausdorff.3 

I W. Magnus, Communs. Pure and App!. Math. 7, 649 
(1954). 

, D. Finklestein, Communs. Pure and App!. Math. 8, 245 
(1955). 

3 F. Hausdorff, Ber. Verhand!. sachs. Akad. Wiss. Leipzig, 
Math-naturwiss. 58, 19 (1906). 
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TABLE II. Numerical values of A, AB, AC, ABC, ABCD, and ABCE for J = Y2 to 10. 

J A AB AC ABC ABCD ABCE 

1/2 3/2 0 -3' 5/23 0 0 0 
1 2'3 2'3'5 0 0 0 0 
3/2 3'5 2"3"5 3'5'7/2' 32'5' 7 0 -34.5'7/22 

2 2'3'5 2'3"5' 7 23 '3'5 23 '3"5.7 23 '34 '5'7 0 
5/2 3'5'7/2 24 '3'5'7 34.5'7/23 22. 34 • 5' 7 24 '34 '5"7 34. 5' 7'11 
3 2"3' 7 2"33 '5'7 23 '3' 5' 7 23 '33 '5"7 23 • 34 • 5" 7'11 24 '34 '5"7 
7/2 2' 3" 7 23 '33 '5'7 3"5'7'11/2 2'33 '5'.7'11 25. 34. 52. 7'11 34 '52'7'11'13/2 
4 2"3"5 2"32'5' 7'11 23 '34 '5 23 '34 '5'7'11 23 '34 '5'.7'11'13 24 '34 '5'7"11 
9/2 3"5'11/2 24 '33 '5'11 3" 5' 7 '11' 13/23 2"33 '5'7'11'13 24 '34 '5'7"11'13 34 '5 3 '7'11'13 
5 2'3'5'11 2'33 • 5'11'13 23 '3'5'7'11 23 '33 '5'7'11'13 23 • 34 • 5" 7" 11' 13 26 '34 '5'7'11'13 

11/2 3'11'13 2"3'5·7'11'13 34 '5'11'13/22 34 • 5" 7' 11 . 13 27 '34 '5"7'11'13 34. 52. 7"11'13 '17/22 

6 2'3'7'13 2'3"5'7'11'13 24 '3'5.7'13 24 '3" 5" 7 '11'13 24 '34 '5"7'11'13'17 26 '34 '52'7'11'13 
13/2 3'5'7'13/2 25 • 3" 5· 7 '13 3'5'7'11'13'17/23 23 '3"5.7'11'13'17 25 • 34 • 52.7. 11 . 13' 17 2'34 '5.7'11'13'17'19 

7 23 '3'5. 7 23 • 3' 5' 7· 13' 17 24.34 '5' 7 24 • 34 • 5' 7' 13' 17 24 '34 '5'7'11'13'17'19 25 '34.5 3 '7'13'17 
15/2 2"3'5'17 24 '33 '5'7'17 3'5'13'17'19 2"33 '5' 7'13'17'19 26 '34 '52'7'13'17'19 34. 5' 7' '11' 13' 17 '19 

8 23 '3"17 23 '33 '5'7'19 24 • 3" 5' 7' 1 7 24 '33 '5"7'17'19 24.34 • 5" 7"13'17'19 25 '34 '52 '7'11'17'19 
17/2 3"17'19/2 25 • 32 • 5 . 17 . 19 34.5'7'17'19/23 23 • 34 • 5" 7' 1 7· 19 25 • 34 • 52. 7' '11' 1 7' 19 2' 34 • 5" 7'13'17'19' 23 

9 2'3"5'19 2'33 '5'7'17'19 24 '3" 5'11'19 24 '33 '5'7'11'17'19 24 '34 '52'7'11'17'19'23 26 • 34 • 5' 7" 11 . 17' 19 
19/2 3'5'7'19 22'33 '5'7'11'19 3'5'7'17'19'23/2' 33 '5'7'11'17'19'23 27 '34 '5.7'11'17'19'23 34 '54 • 7'11'17'19' 23/22 

10 2'3'5'7'11 2'3'5'7'11'19'23 23 '34 '5.7'11 23 '34 '5.7'11'19'23 23 '34 '53 '7'11'17'19'23 26 '34 '5'7'11'13'19'23 
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A derivation is given of the Baker-Hausdorff formula for 
z = In eZe. where x and yare noncommuting operators. 
This result is then used to obtain an expression for z in the 
case that X = p' + Q' and y = aP + {3Q, where P and Q are 

I. INTRODUCTION 

ONE of the major differences between classical 
and quantum physics is the fundamental role 

assigned to noncommuting operators in quantum 
physics. The algebra of noncommuting operators 
has been studied by mathematicians in many con­
texts over the years and many results have been 
derived which are of potential value in quantum 
mechanical and statistical mechanical calculations. 
It is our purpose in the present paper to summarize 

* This research was supported in part by the U. S. Air 
Force through the Air Force Office of Scientific Research, 
Air Research and Development Command under Contract 
# AF 18(600)1315. 

two operators whose commutator [P,Q] = c is a c number. 
With the aid of this result a very simple derivation of the 
expression for the intensity of x rays scattered by the thermal 
vibrations of a crystal is presented. 

some of the theory as it has so far been developed, 
and to derive by its use a result for particular 
operators which is then used to calculate the 
quantum mechanical intensity factor for the scat­
tering of x rays by crystal lattices. The theory that 
will be presented is abstracted mainly from the 
excellent review paper by Magnus,l a following 
paper by Finklestein,2 and the original and quite 
readable paper by Hausdorff.3 

I W. Magnus, Communs. Pure and App!. Math. 7, 649 
(1954). 

, D. Finklestein, Communs. Pure and App!. Math. 8, 245 
(1955). 

3 F. Hausdorff, Ber. Verhand!. sachs. Akad. Wiss. Leipzig, 
Math-naturwiss. 58, 19 (1906). 
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A problem which is often met in practice is that 
of expressing the product of two exponential 
operators in an equivalent form. When the operators 
x and y commute with their commutator [x, y] = 
xy - yx then the following result is well known 

(1.1) 

The generalization of this formula to the case when 
x and y do not commute with their commutator is 
less familiar, but has been extensively discussed in 
the mathematical literature in reference to the 
theory of groups4 and the theory of differential 
equations.5 The resulting formula, an identity of 
the form 

eZell = e', (1.2) 

is known as the Baker-Hausdorff formula. The 
problem of finding an explicit expression for z was 
first attacked by Campbell4 and was soon thereafter 
followed by the investigations of Baker5 and of 
Hausdorff. The last named author found an expres­
sion for z in terms of repeated commutators of 
x and y. This derivation will be repeated below. 
More recently, Goldberg6 has given an expression 
for the coefficient in the expansion of 

C = In (eAeB
) = L ... L ... C(n l , n2 , ••• ) 

(1.3) 

However, the expression is quite unwieldy, and is 
less useful than an expression in terms of com­
mutators. Knowing the C(nt, n2 , ••• ), one can 
find the coefficients of the expansion in terms of 
commutators by methods due to Dynkin7 and to 
Specht.s In addition to these expansions, there is 
still another of the form 

(1.4) 

where Zj is a polynomial of jth degree in x and y and 
can be computed by a linear recurrence method. 
This expansion is due to Zassenhaus, and a deriva­
tion of the recurrence procedure has been given 
by Magnus. l 

We will sketch Hausdorff's calculation of 
Z = In (eZe") in Sec. III since it is a systematic 
procedure easily adapted to specific calculations, 
and since it is found in a rather inaccessible journal. 
In Sec. IV we use this result to obtain 

4 J. E. Campbell, Proc. London Math. Soc. 29, 14 (1898). 
6 H. F. Baker, Proc. London Math. Soc. 34, 347 (1902); 

35,333 (1903); 2, 293 (1904); 3, 24 (1904). 
6 K. Goldberg, Duke Math. J. 23, 13 (1956). 
7 E. B. Dynkin, Doklady Akad. Nauk S.S.S.R. 57, 323 

(1947). 
8 W. Specht, Math. Z. 51, 367 (1948). 

In [exp (x2 + y2) exp (,By)] 

and in Sec. V we apply our result to a problem 
arising in the theory of the scattering of x rays by 
lattice vibrations. 

II. DEFINITIONS AND BASIC RESULTS 

We begin by introducing a definition and deriving 
several preliminary results which will be useful in 
Sec. III. Our starting point is the Taylor series 
definition 

F(x + u) = F(x) + u(a/ax)F(x) 

+ ![u(a/ax)]2F(x) + (2.1) 

where u is a variable which doesn't necessarily 
commute with x and where the operator u a/ax is 
defined in the following manner: Let F(x) consist 
of a polynomial in x of the form Axm Bx" .,. . 
Then, if we operate with u a/ax on this polynomial, 
it replaces the x's one at a time by u. Thus, we 
would have 

u(a/ax)(Ax2Bx) = AxuBx + AuxBx + Ax2Bu, (2.2) 

where A and B are independent of x. We remark 
that if F = F 0 + F 1 + ... is a sum of polynomials 
of the order 0, 1, 2, .,. in x, then 

x(a/ax)F(x) = FI + 2F2 + 3Fa + .... (2.3) 

The two-dimensional Taylor's series also follows 
from Eq. (2.1) by noting that u a/ax and v a/ay 
commute. We then find 

F(x + u, y + v) = F(xty) + (u :x + v :y)F(XtY) 

+ !(u a/ax + v a/ay)2p(XtY) + ... . (2.4) 

In what follows, we will use the notation 

{ul = u, {u, xl = [u, x], {u, xnl 

= [{u, xn
-

t
}, x]. (2.5) 

This notation can be extended to 

{u, p(x) I (2.6) 

where 
(2.7) 

with constant coefficients p". 
It follows as a trivial consequence of Eq. (2.1) that 

u(a/ax)e% = u + (1/2!)(ux + xu) 

+ (1/3!)(ux2 + xux + x2u). 

+ ... . (2.8) 



                                                                                                                                    

If we now set 
U = [w, x] 
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(2.9) 
p = U + (1/2!)ux + (1/3!)ux2 + 

= u[(eX 
- 1)/x] , 

773 

(2.21) 
in Eq. (2.8) and expand the resulting expressions 
we find 

[w, x] (a/ax)e Z = [w, x] + (1/2!)[w, x2
] 

+ (1/3 !) [w, x3
] + ... = [w, eX]. (2.10) 

we see that the same manipulations will serve to 
solve for u in terms of p and x. Hence, if we can 
solve Eq. (2.21) for x in terms of p and u, we can 
solve Eq. (2.20) for their operators' counterparts. 
But Eq. (2.21) can be written 

Another formula which will be of some use is 

e-rweX = w + {w, x} + (1/2!){w, x 2 1 + ... , (2.11) 
px p ~ Bn n 

u = -x--l = L" ,x , 
e - n-O n. 

(2.22) 

which is derived by expansion of the terms involved, where the Bn are the Bernouilli numbers 

B2 = 1/6, and a simple induction. From this it follows by Bl = -1/2, 
multiplication from the left by eX tha t B4 = -1/30, B. = 1/42, ... , 
[w, eX] = eX({w, xl + (1/2!){w, x 2

) 

+ (1/3!) {w, x3
} + ... ) 

and also, from Eqs. (2.10) and (2.12), that 

u(a/ax)eX = [w, eX] 

= eX[u + (1/2!){u, x I 
+ (1/3!){u, x2

J + ... ], 
which can be written as 

u(a/ax)eX = eXt/J(u, x), 

where 

t/J(u, x) = u + (1/2!){u, xl 

B2n + 1 = 0 n > O. 
(2.12) Thus, if 

u = l/;(p, x) 

is the solution to p = t/J(u, x) then 

l/;(p, x) = ~ !i {p, xnl = {p, eX ~ I}' 
(2.13) Similarly, if 

u = w(q,x) 

is the solution to q = l/;(u, x), then 
(2.14) 

w(q, x) = l/;(q, -x) = {q, x/(l - e-X»). 

III. THE BAKER-HAUSDORFF FORMULA 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

+ (1/:5!){u, x2
) + 

= {u, (eX - 1)/xl. 
In a similar fashion, one can show that 

u(a/ax)eX = l/;(u, x)eX

, 

(2.15) With the foregoing results in hand we now turn 
(2.16) to the calculation of z = In (eXe"). If x is changed to 

x + aU and y is changed to y - aV where u and v 
are arbitrary in such a way that z(x, y) = z(x + au, 

(2.17) y - av) then a Taylor's series expansion yields the 
where 

l/;(u, x) = t/J(u, -x). (2.18) 

We will also require the reversion of the series 

P = t/J(u, x) = u + (1/2!) {u, xl 

identity 
u(a/ax)z = v(a/ay)z. (3.1) 

In the present case if 

ex+a"ey
-
a, = eX[l + at/J(u, x) + ... ] 

X [1 - al/;(v, y) + .. ·]eY 

= eZeY, (3.2) 

we must have 
t/J(u,x) = l/;(v,y). (3.3) 

+ (1/3!){u, x 2
) + "', (2.19) 

i.e., we wish to express u in terms of p and x. We 
can do this purely by scalar multiplication, addition, 
and subtraction. Starting from Eq. (2.19) we can 
successively write 

{p, x) = {u, x) + (1/2!) {u, x2 j 
Since u is arbitrary we may choose it equal to x, 
from which we find 

+ (1/3!){u, x3
} + x(a/ax)z = v(ajay)z 

{p, x2
) = {u, x 2

) + (1/2!) {u, x3
) + ... , (2.20) and 

t/J(u, x) = x. 

As a consequence we find, from Eq. (3.3), 
so that we can successively eliminate the terms 
I u, x2

}, I U, x3
}, •••• Now, if we consider the purely l/;(v, y) = x and v = w(x, y). 

scalar equation We now expand z as a series 

(3.4) 

(3.5) 

(3.6) 
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Z = Zo + ZI + Z2 + ... , (3.7) 

where Zk is a polynomial containing k factors of x. 
Since v contains x only to the first power [see Eq. 
(2.27)] we can rewrite Eq. (3.4) as 

ZI + 2Z2 + 3z3 + ... = v(a/ay) 

X(ZO+ZI+Z2+"') (3.8) 

using Eq. (2.3). Hence we have the identities 

ZI = v(a/ay)zo, 2Z2 = v(a/aY)Z1' 

3z3 = v(a/aY)Z2, ... , (3.9) 

where Zo = y, and ZI = v = w(x, y). If we define 

v = w(x, y) 

v(ajay)w(x, y) = WI(X, y) 

the matrix differential equation 

dY(t)/dt = A(t)y(t) (3.17) 

with the initial condition yeO) = I. We follow closely 
the work of Magnus in this section. In analogy with 
with the one-dimensional case, one would like a 
solution in the form 

yet) = exp a(t) (3.18) 

and the problem then becomes one of finding an 
expression for a(t). It follows from Eq. (2.14) that 

dy (da a) 
dt = dt aa exp a 

_ {da 1 - e~p (-a)} 0 

- dt' a exp "' ... (3.19) 

v(a/aY)Wt(x, y) = wix, y) (3.10) Noting Eq. (3.18), and substituting this result into 
the original differential equation, we find 

then 

z = y + w(x, y) + (l/21)wI(x, y) 

+ (1/31)w2(x, y) + ... . (3.11) 

In the same way, using the substitution v = y, 
we find 

y(a/ay)z = u(a/ax)z with u = if;(y, x) (3.12) 

and the result analogous (and equivalent) to Eq. 
(3.11) is 

z = x + if;(y, x) + (1/21)if;I(Y, x) 

+ (l/31)if;2(y, x) + ... , (3.13) 

where 
u = if;(y, x) 

u(a/ax)if;(y, x) = if;1(Y' x) 

u(a/ax)if;I(y, x) = if;2(Y, x), (3.14) 

The expansion of Z to fifth order is 

z = x + y + (l/2){x, y} 

+ (1/12) {x, y2} + (l/12){y, x2} 

+ (1/24){y, x2, y} - (l/720) {x, y4} 

+ (l/360) {x, y3, x} 

+ (1/360){y, x3
, y} 

- (1/120) {x, y\ x, y} 

- (1/120){y,x2 ,y,x} + "', (3.15) 

where, for example, 

(3.16) 

A(t) = {dd~ , 1 - ex~ (- a)}. (3.20) 

If we now use a reversion scheme similar to that 
used in the derivation of Eq. (2.22) we find 

da { a } ro n dt = A, 1 _ exp (-a) = t; f3nI A , a}, (3.21) 

where 
f33 = f35 = ... = 0 

and 
f32n = (-1) n-~2m/(2m) 1, 

where the B 2m are the Bernouilli numbers. Finally, 
this equation is solved by iteration, by setting 

a o = 0, 

al(t) = fa' A(T) dT 

l ' ( 1 an(t) = 0 A( T) + 2' [AI an-I] 

+ 1~ [[A, an-I], an-I] + ... ) dT (3.22) 

and putting a(t) = limn~ro an(t). This leads to a 
result 

a(t) = fa' A(r) dT + ~ fa' [ A( T), f A(u) duJ dT 

+ i fa' [ A( T), f [ A(u), f A(p) dPJ duJ dT 

+ 112 L [[ A( T), f A(u) duJ f A(u) duJ dT 

+ ... , (3.23) 

An important extension of the Baker-Hausdorff which is the continuous analog to the Baker­
formula results when one considers the solution of Hausdorff formula. 
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IV. EVALUATION OF In [exp (P2 + Q2) exp (aP + I1Q)1 1/;l(Y, x). Hence, we need only calculate the term 

In the present section we derive an expression for linear in A in the expansion of 1/;(y, x + A1/;) , 

z = In [exp (P2 + Q2) exp (aP + !3Q)]' 

where P and Q satisfy 
(4.1) 1/;(y, x + A1/;) = :t B~ {V, (x + A1/;t). 

11=0 n. 
(4.12) 

[p, Q] = e. (4.2) 

With e a scalar constant in Eq. (4.1) we can put 
a = 0 without loss of generality since, if it is not 
equal to zero, we can define new operators 

p = (a2 + 132
) -1/2(!3P - aQ), 

q = (a2 + !32)-1I2(aP + !3Q), 

which have the property 

p2 + Q2 = p2 + q2, 

(4.3) 

aP + !3Q = (a2 + !32)1/2q, (4.4) 

[P, Q] = [p, qJ. 
We will calculate the successive terms in Eq. 

(3.13). In preparation for what follows, we note 
the formulas 

{V, x2n) = (-1)"(2e)2n!3Q, 

{y,x2"+1) = (_1)"+\2e)2n+1!3P. 

where we have made the identifications 

x = p 2 + Q2, Y = !3Q. 

Equations (4.5) are easily proved by induction. 
The first term to be calculated is 

1/;(y, x) = ~ !i Iy, x"), 

= !3eP - !3e cot eQ, 

(4.5) 

(4.6) 

(4.7) 

Let us set 
Tn = {y, xn), 

Sn = {y, (x + A1/;)"). 

Then we have 

Sn = [Sn-1, p 2 + Q2 + A/3e(P + Q cot e)] 

= Tn + A!3e[Tn- 1, P + Q cot e], 

( 4.13) 

( 4.14) 

where we have made use of the fact that [V, 1/;] is a 
e number so that only the first power of A remains 
in the expression for S", i.e., Sn is of the form 
S" = Un + Aan where an is a scalar. We are only 
interested in the term linear in A, i.e., 

Un = !3e[Tn- 1, P + cot eQ]. 

For Un we therefore find 

U2n = (_1)"!322n-1e2n+1 cot e, 

U2n+1 = (_1)"+l!322ne2n+2. 

( 4.15) 

( 4.16) 

When the U" are substituted into the expression 

1/;1 = :t B~ Un (4.17) 
n~O n. 

and the resulting summations carried out, we find 

1/;l(Y, x) = t{:i2e2 + t{:i2e cot e(e cot e - 1). (4.18) 

Since 1/;,(y, x) is a scalar quantity rather than an 
operator, 1/;2, 1/;3 ... all vanish and 

z = x + 1/;(y, x) + t1/;,(y, x) (4.19) 

where we have substituted the results of Eq. 
into the first line, and used the identity 

(4.5) exactly. 
We have therefore obtained the result that 

co n (2x)2n 
X cot X = ~ ( -1) B 2n (2n)! . 

(4.8) z = (P + t!3e)2 

The second term in the expansion of Eq. (3.13) is 

1/;l(Y' x) = 1/;(ajax)1/;(y, x). (4.9) 

We may calculate 1/;l(Y' x) by the following device. 
Consider the equation 

1/;(y, x + A1/;) = {y, (x + A 1/;)/(ex +)"" - 1)), (4.10) 

where A is a small ordering parameter (small in the 
sense that the resulting series is convergent). 
According to the Taylor series expansion of this 
function we have 

1/;(y, x + A1/;) = 1/;(y, x) 

+ A1/;(y, x)(a/ax)1/;(y, x) + (4.11) 

It will be observed that the term linear in A is just 

+ (Q + t!3e cot d - M2e cot e. (4.20) 

For the case a r" 0 we can use the transformation of 
Eq. (4.3) to establish the result 

z = p 2 + Q2 + (13 + a cote)cP 

+ (13 cot e - a)eQ + te2(a2 + 132
) 

+ tea2 + !32)e cot e(e cot e - 1) 

= {p + !e(!3 + a cot e)}2 

+ {Q + te(!3 cot e - 0'))2 

- tea2 + !32)c cot e. 

V. X-RAY INTENSITY FORMULA 

(4.21) 

The intensity of x rays scattered by the thermal 
vibrations of a monatomic Bravais lattice is, in 
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electron units,9 

I = Itol 2 :E exp (~k .[x(l) - x(l')] 1 
l,l' 

X exp (~k .[u(l) - u(l')]I. (5.1) 

In this expression fo is the atomic scattering factor, 
xCl) is the position vector of the equilibrium l'th 
atom in the crystal, u(l) is the displacement of the 
l'th atom from its equilibrium position, and the 
sums extend over all the atoms in the crystal. The 
vector k, called the scattering vector, is given by 

k = (2'/1/")(8 - 80), (5.2) 

where So and S are unit vectors in the directions of 
the normals to the wavefronts to the incident and 
scattered waves, respectively, while A is the wave­
length of the x rays. 

The atomic displacements u(l) are time-dependent 
so that Eq. (5.1) gives the instantaneous intensity. 
What is observed, however, is the average of the 
intensity over a time long compared with the period 
of the atomic vibrations. It is easier and more usual 

where Pa(l) = Mua(l), M is the atomic mass, 
<pall(l, l') is a second derivative of the crystal's 
potential energy, and a, f3 label the Cartesian axes. 

Equation (5.5) can be put into a simpler form if 
we make the normal coordinate transformation 

ua(l) = (NM)-! :E ea(k 1 j) (q(k 1 j) cos 27rk·x(l) 
k.i 

- q(k 1 j) sin 27rk·x(l) I, 

ua(l) = (NM)-! :E ea(k 1 j)/ q(k ! j) cos 27rk·x(l) 
k .f 

+ q(k 1 i) sin 27rk·x(l) I. (5.6) 

Here, e(k;) is the polarization vector of the lattice 
wave described by the wave vector k and polariza­
tion index f. The allowed values of k are uniformly 
and densely distributed throughout a unit cell of 
the reciprocal lattice, and i takes the values 1, 2, 3. 
w;Ck) is the frequency of the mode k;. 

With the aid of the transformation (5.6) the 
expression for H becomes 

to replace the time average by an ensemble average 
over a canonical distribution given by H = t :E (q\k 1 j) + w~(k)l(k i j) 1 (5.7) 

p = e-fiH/Tr (e- fiH) , (5.3) and k·[u(l) - u(l')] is transformed into 

where H is the crystal Hamiltonian. The ensemble k·[u(l) - u(l')] = (NM)-! :E (k.e(k / j) 
average of the expectation value of an operator 0 is k • i 

given' by X (q(k 1 j) [cos 27rk· x( l) - cos 27rk· x(l')] 

(0) = Tr (e-fiHO)/Tr (e-{3H). (5.4) _ [q(k / j)/w;(k)][sin 27rk.x(1) 

We are therefore required to evaluate the thermal 
average 

(exp ~k .[u(l) - u(l')]). 

- sin 27rk·x(l')] 

= :E laCk / j)q(k / j) + 'Y(k / j)q(k / j) I. 
k,; 

(5.8) 

The crystal Hamiltonian in the harmonic approxi­
mation is given by 

H = :E P2~ + t :E :E <pafi(l, l')u,,(l)ufi(l'), (5.5) 
I, a l,a I' ,Ii 

This equation defines the coefficients a(k/i) and 
'Y(k/i). It should be kept in mind that they are 
functions of land l'. The thermal average 
(exp ik.[u(l) - u(l')]) becomes 

(exp ~k·[u(l) - u(l')]) 

Tr (exp [-tfj :E q\k 1 j) + W~(k)q2(k / m exp [i :E laCk / j)q(k / j) + 'Y(k / j)q(k i j) lJ) 
k.i k.i 

Tr (exp [ - til :E (q\k / j) + w:(k) q\k / j) lJ) 
(5.9) 

k,; 

The variables q(kJi) and q(k/i) must be regarded of the reciprocal lattice and vanish otherwise. All 
as quantum-mechanical operators and obey the other pairs of operators commute 
commutation relations [qCk / j), q(k' / j')] 

[q(k / j), qCk' / j')] = ih tlCk - k') ow, (5.lOa) = [qCk / j), q(k' / j')] = o. (5. lOb) 
where ~(k) is unity if k is zero or a translation vector 

These results mean that we can factor the thermal 
9 R. W . .Tames, The Optical Principles of the Diffraction of average (5.9) into a product of thermal averages, 

X-Rays: The Cry~talline State (G. Bell and Sands, London, 
England, 19.58). one for each mode. Thus we have the relation 
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(exp ~ko[u(l) - u(l')]) 

_ II Tr exp {-M[q2(k I j) + W;(k)q2(k I j)]1 exp {i[a(k I j)q(k I j) + 'Y(k I j)q(k I j)]1 (5.11) 
- k ,; Tr exp /- t!3[q2(k I j) + w~(k)q\k I j)] 1 . 

The application of the results of the preceding section to this problem are obvious. If we make the 
following identifications 

P = i(t!3)!q(k I j), a = (2/!3)!a(k I j), 
Q = i(tm!w;(k)q(k I j), (5,12) 

C - . !3liw;(k) R = (~)~ 'Y(k I j) 
- ~ 2' I-' !3 wi(k) , 

we find that 

exp [-t!3[q2(k I j) + W~(k)q2(k I DJ] exp [i[a(k I j)q(k I j) + 'Y(k I j)q(k I j)]] 

= exp {-t!3[(tCk I j) + W;(k)Q2(k I DJ - th(a2 (k I j)w~(k) + 'Y2(k I j» 1 cothw~~k~;(k), (5,13) 

where 

Q(k I j) = q(k I j) + liw;(k) ('Y~~(M) - ia(k I j) coth t!3liw;(k») , 

Q(k I j) = q(k I j) - ~ (a(k i j) + i 'Y~~(~!) coth Mliw;(k»)' 

Thus, Eq. (5.11) becomes 

(exp ~ko(u(l) - u(l'») = n exp l-th(a2(k I j)w~(k) + 'Y2(k I j» I coth:~~Jk) 

X Tr exp { -t!3[Q2(k I j) + W;(k)Q2(k I j) I. 
Tr exp l-t!3[l(k I j) + W~(k)q2(k I j)]1 

(5.14) 

(5.15) 

Since the transformation from the q variables to the Q variables is a canonical transformation, the 
two traces in Eq. (5.1:"i) cancel each other and we are left with 

(exp tko(u(l) - u(l'»)) = exp {-~ f1 (a
2

(k I j)w;~~~k~ 'Y2(k I j» coth Mliw;(k)}' (5.16) 

If we substitute into this result the explicit expressions for a(klj) and 'Y(klj) from Eq, (5.8) we obtain 
finally that 

{ 
Ii ~ (koe(k I j»2 _ } 

(exp tko(u(l) - u(l'») = exp - '2NM e -~(k) coth tiJliwJk) X (1 - eos 21rk·(x(t) - x(l'»· (5.17) 

This result has been obtained by several authors10
-

12 using different mathematical techniques. 

10 H. Ott, Ann. Physik 23, 169 (1935). 
11 M. Born, Reports on Progress in Physics, IX, 294 (1943). 
12 A. A. Maradudin, G, H. Weiss, and E. W. Montroll, Theory of Lattice Dynamics in the Harmonic Approximation 

(to be published). 
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The statistical mechanics of a one-dimensional system of charged sheets is studied in the formalism 
of .the ~and can?nical ensemble. It is shown ~hat the grand partition function may be expressed as a 
WIener mtegral, I. e., as an average of a certam functional of Brownian motion paths. This functional 
integral is then expressed in terms of the fundamental solution of a partial differential equation of diffu­
sion type. This depends on a theorem of Kac whose proof is also given. The generalitv of this method is 
discussed. When all charges are integral multiples of a common unit the problem'is reduced to the 
determination of the largest characteristic value of an ordinary differential operator with periodic 
coefficients. An invariance property of the thermodynamic potential is shown to imply charge neutral­
ity in the infin~te system lim!t: A theorem is pro.ven whic~, in cer~in cases, excludes the possibility of a 
t~lCrmodynamlC P?ase tra~slhon. The metho~ IS generahzed to Yield exact expressions for the n-par­
tICle reduced densIty functIOns. Some properties of the two-partICle functions are discussed. 

1. INTRODUCTION 

I N two recent papers the thermodynamics of a 
one-dimensional "plasma" has been determined 

rigorously.l.2 This system consists of a great number 
of uniformly charged plane sheets freely able to move 
and cross each other in the direction normal to 
the planes. It was shown in I that the thermo­
dynamic functions are expressible in terms of a 
single function which may be defined by the Sturm­
Liouville characteristic value problem of the 
Mathieu functions. An analysis of this result showed 
that the system behaves as a true plasma when its 
mean kinetic energy is much larger than its mean 
potential energy; in the opposite case it resembles a 
collection of infrequently colliding neutral molecules. 
The calculation was rendered possible by the obser­
vation that the partition function of the constant­
pressure ensemble is a sum of simple algebraic 
expressions, and that the problem of summation 
over very many terms could be discussed sys­
tematically by using generating functions. 

In the present paper we propose to discuss this 
problem with the aid of a more powerful method. 
It is a variant of a method used by one of us3 for 

* Supported by the U. S. Atomic Energy Commission. 
1 A. Lenard, J. Math. Phys. 2, 682 (1961). This paper will 

be referred to as I. 
2 S. Prager, Advances in Chemical Physics, edited by I. 

Prigogine (Interscience Publishers, Inc., New York, 1961), 
Vol. IV. as. F. Edwards, Phil. Mag. 4, 1171 (1959). The author 
regrets that several calculational errors were inadvertently 
allowed to occur in this article. 

the calculation of the thermodynamic functions of 
a real (i.e., three-dimensional) plasma. Its essence 
is the expression of the grand partition function as 
the average of a certain functional over its argument 
function. An averaging over functions (or "func· 
tional integration"; we shall use the terms inter· 
changeably) may be defined in a variety of ways. 
In probability theory a set of functions over which 
a method of averaging with non-negative weight 
is prescribed is termed a stochastic (or random) 
process. It turns out that for the one-dimensional 
plasma the appropriate random process is of a 
familiar and simple kind. It is the "Wiener process" 
which is the mathematical idealization of the 
Brownian motion of a particle.4.G 

There are several motivations for this work. One 
of them is that in three dimensions the presence of 
the singUlarity of the interparticle force at small 
distances makes a theory based on a pure Coulomb 
force mathematically meaningless, and if this is 
remedied by introducing a repulsive hard core for 
the particles the resulting extra complication 
obscures the essentials of the functional integration 
method. There is no D;eed for such a complication 
in the one-dimensional model since the interparticle 
potential remains regular with vanishing distance. 
Secondly, the present method offers greater insight 

4 M. Kac, Probability and Related Topics in Physical 
Sciences (Interscience Publishers, Inc., New York 1959) 
Chap. IV. ' , 

6 J. M. Gel'fand and A. M. Yaglom, J. Math. Phys. 1, 48 
(1960), where other references are to be found. 
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into some mathematical features of the one-dimen­
sional model. In particular, the characteristic 
value problem of the Mathieu functions enters here 
in a quite natural way. This stands in contrast to 
the treatment in I where it appears as a trick whose 
origin remains somewhat of a mystery. The reduc­
tion to the characteristic value problem is accom­
plished by the use of a theorem due to Kac6 which 
allows the expression of the average of a functional 
of a certain type in terms of the fundamental 
solution of a parabolic partial differential equation. 
This reduction has no analog in the three-dimen­
sional case for reasons which will be pointed out 
below. 

With the present method we also obtain some 
results that go far beyond those contained in I. 
For one, we are not restricted to the case of a two­
component gas containing particles of equal and 
opposite charge, although this remains the simplest 
case in which concrete results can be obtained. 
More importantly, we obtain rigorous expressions 
for the reduced density functions involving an 
arbitrary number of particles, and, in particular, a 
fast converging expansion for the simplest of these, 
the two-particle density function. 

Our plan is as follows. We first set up the machin­
cry of statistical mechanics in the grand canonical 
ensemble formalism and explain the reason for the 
appropriate choice of the potential energy function 
(Sec. 2). Next, we give a brief resume of the Wiener 
process and reproduce a proof of a theorem due to 
Kac which is of decisive importance (Sec. 3). We 
then show how the grand partition function may be 
regarded as a certain functional integral (or average) 
over the Wiener process, and reduce its determina­
tion to an initial value problem for a partial dif­
ferential equation of the diffusion type. We discuss 
the role that is played in this result by two properties 
of the Wiener process, its Markoffian and its 
Gaussian nature (Sec. 4). If all particles possess 
charges which are integral multiples of a common 
unit, the problem may be further reduced to a 
characteristic value problem of an ordinary dif­
ferential operator with periodic coefficients. Two 
general questions are discussed, the question of 
charge neutrality and the question of the continuity 
of the thermodynamic quantities (Sec. 5). The 
dominant behavior in the "plasma limit" is derived 
by a simple heuristic approximation scheme on the 
appropriate partial differential equation (Sec. 6). 

6 M. Kae, Proceedings of the Second Berkeley Symposium 
on Probability and Statistics (University of California Press, 
Berkeley, California, 1951), p. 189. See also reference 4. 

Finally, we explain how the reduced density func­
tions are determined and discuss, in particular, the 
properties of the two-particle function (Sec. 7). 

2. THE GRAND PARTITION FUNCTION 

The most convenient method from the present 
point of view is that based on the grand canonical 
ensemble. We suppose our system to consist of a 
great number of parallel charged sheets located in 
the region 

o ~ x ~ L. (1) 

These sheets (which in the following will be referred 
to as particles) carry surface charge densities which 
fall into a finite number of groups. We denote by 
N' the number of particles carrying charge u', Nil 
carrying charge u", etc., and let N = N' + Nil + ... 
stand for the total number. For the moment we 
make no assumptions regarding the charges u', 
u", '" which may be different or equal, positive, 
negative, or even zero, and need not be integral 
multiples of a common unit. A more restrictive 
hypothesis will be imposed later. 

In the grand canonical ensemble the probability 
density that N arbitrary elements dx 1, dX2, ... , dXN 
within the region (1) are occupied by particles of 
charges U l1 u2 , ••• , UN, respectively, and that no 
other particles are in the region is 

1 ,N' /IV" QZ Z ... 

X exp {- VN'N" ... (Xl~ x2 , ••• ,XN)}. (2) 

Here (J is the temperature; z', z", '" are positive 
parameters of the dimension of a number density; 
VN'N" ... is the total potential energy as a function 
of the coordinates; and g = geL, (J, z', z", ... ) is 
the grand partition function. The latter is defined by 

As is well known, the asymptotic behavior of g in 
the infinite system limit L --t CXl specifies the thermo­
dynamic properties of the system. In particular, 
the pressure is 

P = (J lim In n. 
L_oo L 

(4) 

Once P = P(8, z', z", ... ) is determined, the densi-
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ties of the several components may be derived by 
differentiation 

inequalities 

° ::; Xl ::; X 2 ::; ••• ::; XN ::; L (10) 
n' = (z'j()) aPjaz', 

n" = (z" j ()) ap j az" , 

etc. 

and each being associated with a definite succession 
(5) of charges (a "configuration") 

The internal energy per unit volume is 

u = !z' aPjaz' + !z" aPjaz" + ... 
+ () aPja() - P. (6) 

We now turn to the consideration of the potential 
energy. If two particles, placed at Xl and X2, have 
charges 0"1 and 0"2, respectively, the potential energy 
of their mutual interaction is -271"0"10"2 IXI - x21. It 
would be incorrect, however, to take for the total 
potential energy merely the sum 

-271" L L O"kO"I IXk - xd. (7) 
l5,k<I5,N 

We must imagine that the system is in contact with 
an infinite reservoir (in the region x ::; 0, say) which 
exchanges particles with it giving rise to the statis­
tical fluctuations in particle numbers. Take the 
system plus reservior electrically neutral as a whole 
and consider the state of affairs when some particular 
number of particles, N' of charge 0"', N" of charge 
0"", etc., are in the system. Then there is a total 
charge 

O"r •• = -(N'O"' + N"O"" + ... ) (8) 

in the reservior. This creates a constant electric 
field of magnitude 271"O"reo in the region X ~ 0. The 
particles of the system are subject to this electric 
field in addition to the forces they exert on each 
other. Thus, there is an additional contribution 

(9) 

to the potential energy. We define V N'N"" to be 
the sum of the functions (7) and (9). The contribu­
tion (9) comes physically from the interaction of the 
particles inside the system with those inside the 
reservoir. That it must be properly attributed to 
the system as an additional potential energy and 
cannot be neglected as a "boundary effect" is due, 
of course, to the fact that the interparticle force 
does not tend to zero with increasing distance. 

The expression for the potential energy may be 
conveniently simplified by the device made already 
use of in 1. The grand partition function may be 
decomposed into a sum of integrals in each of which 
the integration variables are restricted by the 

(11) 

In addition to the sums over the numbers N', N", ... 
we now have also a sum over all sequences C 
restricted only by the requirement that N' of the 
O"k have value 0"', N" the value 0"", etc. Let us 
consider now a definite configuration and introduce 
the quantities 

Ek = 471"(O"res + t O"l) , (12) 

(k = 1, 2, ... ,N). 

Ek is just the electric field in the space between 
the kth and (k + l)st particles. A simple calculation 
shows that the potential energy, as we have defined 
it, is equal to 

(Xo = 0, by definition), i.e., the total electrostatic 
field energy within the boundaries of the system. 

Making use of this we have the grand partition 
function in the form 

~ ~ L 

'" ,N' '" "N" '" I n = Nf:
O 

z ~o z . .. "c' 0 dXN ••• 

I x, {I N 2 } 
X dXI exp --8 () L Ek-I(Xk - Xk-l) • 

o 71" k-l 
(14) 

The symbol Lc denotes the summation over the 

N! 
N ' ! Nil! ... 

configura tions. 

3. THE WIENER PROCESS AND THE 
THEOREM OF KAC 

We shall now collect the mathematical apparatus 
needed for exhibiting the grand partition function 
as a functional integral. This material is not new 
and it is included here only in order to enable a 
reader not thoroughly familiar with it to follow the 
argument without interruption. If more detail and 
mathematical rigor than can be given here is desired, 
reference may be made to the review of Gel'fand 
and Yaglom,6 or to the book of Kac.4 
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We consider the mathematical description of the 
Brownian motion of a particle. Let cp(x) stand for 
one of its coordinates as a function of time.7 This 
function is specified only in a statistical sense, 
namely, by the following two postulates: 

(a) The conditional probability that cp(x I) is in an 
element dCPI around CPl given that cp(xo) = CPo is 
P(CPI - CPo,. Xl - Xo) dCPl for any Xl > Xo. The function 
Pis 

P(cp, x) = (47l'Dx)-! e-<q,'/4Dx) , (15) 

D being a positive constant. 
(b) Displacements in nonoverlap ping time inter­

vals are statistically independent quantities. 

The two postulates are compatible on account of 
the identity 

P(CP2 - CPo, X2 - xo) = L: dcpIP(CP2 - CPI, X2 - Xl) 

(16) 

whose meaning is that the displacement CP(X2) - cp(xo) 
can be regarded as the sum of two statistically 
independent displacements cp(xI) - cp(xo) and 
CP(X2) - cp(xl). If Xv, Xl) •.• Xn in any increasing 
sequence of time values, the probability that 
CP(Xk) is in dCPk(k = 1,2, ... ,n) given that cp(xo) = Xo 
is the product 

n 

II P(CPk - CPk-l, Xk - Xk-l) dCPk' (17) 
k-l 

Any quantity which is an expression involving rP(x) 
is a random variable whose average value may be 
calculated by the above assignment of probabilities. 
It was WienerS who first recognized that this 
probabilistic model of Brownian motion amounts to 
assigning a measure in the space of continuous 
functions cp(x), the "possible paths of the Brownian 
particle," and that statistical averaging corresponds 
to a theory of integration over this space.4.6 

We shall be interested exclusively in averages of 
the form 

\ exp { dx' F(cp(x') ,x') I cp(xo) = CPo) , (18) 

where F(cp, x) is some given function. We shall 
always use this bracket notation to indicate averag­
ing over cp(x) by the method just explained. The 
condition following the bar is to be satisfied by all 
Brownian paths over which the averaging is carried 

7 The reason for this unconventional notation will become 
clear below. 

8 N. Wiener, J. Math. and Phys. 2, 131 (1923). 

out. When misunderstanding is not likely we shall 
omit writing out this condition explicitly. 

A method of calculating (18) will now be given. 
Expand the exponential in a power series, inter­

change the averaging with the time integration, and 
make use of the symmetry of the integrand in the 
integration variables. The following series expansion 
results: 

1 + t { dXn {n dXn_1 ... {' dX I 

X (F(CPn, xn)F(CPn-l, Xn -,) ••• F(CPI, XI», (19) 

where we have set CP(Xk) = rPk as an abbreviation. 
The successive terms of this series will now be 
related to each other by an integral-recursion 
formula. We write the first term 

(20) 

with 

Qo = P(cp - CPo, X - xo). (21) 

The next term (n = 1) may be written as 

{ dX I L: dcp L: drP,P(rP - cP" x - XI) 

X F(CPI, XI)P(CPI - rPo, Xl - Xo) 

= L: dcpQI(cp, X; CPo, xo). (22) 

The first factor P may appear superfluous inasmuch 
as the integration over cP can be trivially carried 
out. However, it is convenient to include it because 
this puts in evidence that 

QI = t dX I L: dcplP(cp - rP" X - XI) 

X F(CPI, X,) Qo(cp, , XI; CPo, xo). (23) 

The next term (n = 2) is 

X P(cp - CP2, X - x2)F(CP2, X2)P(rP2 - cP" X2 - XI) 

X F(cpI, XI)P(CPI - rPo, x, - xo) 

= Loooo dcpQ2(CP, x; CPo, xo), (24) 

where 

(25) 
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The structure of this formula is the same as (23), 
and this can be continued indefinitely. The general 
term of the sum (19) is 

Loooo dcpQn(CP, Xi CPo, xo), (26) 

and the successive integrands are related to each 
other by 

Qn(CP, Xi CPo, xo) = { dx' L: dcp' 

X P(cp - cP', X - x')F(cp', X')Qn-1W, x'i CPo, xo). (27) 

Let 

(28) 

Then we have shown that the average value (18) can 
be expressed as 

(29) 

the function Q being the solution of the integral equation 

Q(cp, Xi CPo, xo) = P(cp - CPo, x - xo) 

+ 1: dx' L: dcp'P(cp - cp', x - x') 

X F(cp', x')Q(cp', X'i CPo, xo). (30) 

This theorem and this derivation of it are due to 
Kac.9

•
4 Other derivations have been given by 

Rosenblatt,1O by Blanc-Lapierre and Fortet,l1 and 
by Darling and Siegert.12 

The integral equation (30), in turn, is equivalent 
to a partial differential equation with an appropriate 
boundary condition. The function P, given explicitly 
in Eq. (15), satisfies the equation 

{a/ax - D a2/acp2IP(cp, x) = 0 (31) 

and the initial condition 

P(cp, 0) = o(cp). (32) 

Therefore, applying the operator {a/ax - Da2/acp21 
on the right-hand side of (30) only one term survives; 
thus, 

{a/ax - D a2/acp2 - F(cp, x) IQ(cp, xiCPo, xo) = O. (33) 

Equation (30) also shows that 

Q(cp, Xo; CPo, xo) = o(cp - CPo). (34) 

9 Reference 6, Sec. 3. 
10 M. Rosenblatt, Trans. Am. Math. Soc. 77, 120 (1951). 
11 A. Blanc-Lapierre and R. Fortet, Theorie des functions 

aletoires (Masson & Cie, Paris, 1953), Chap. VII. 
12 D. A. Darling and A. J. F. Siegert, Proc. Natl. Acad. 

Sci. U. S. 42, 525 (1956). 

This means that Q is the fundamental solution of the 
partial differential equation (33). 

The theorem of Kac can be interpreted physically 
in a variety of ways, but our concern with it is 
due only to the interesting fact that the grand 
partition function of the system under investigation 
can be identified as a functional average of the 
precise form (18). The next section is devoted to 
the demonstration of this fact and a discussion of 
its significance. 

4. THE GRAND PARTITION FUNCTION AS 
A FUNCTIONAL AVERAGE 

We intend to show that 

Q = < exp lL dx'F(cp(x')) I cp(O) = 0) , 
where the function F is 

F(cp) = z'eiu'¢o + z"eiU"¢o + 

(35) 

(36) 

and the diffusion constant of the Wiener process 
[cf. Eq. (15)] is 

D = 27r/O. (37) 

To show this we begin by expanding the exponen­
tial inside the bracket into a multiple power series 
of z', z", etc., and then we interchange averagmg 
with integrating over x. The series 

f z':~ f z";," ... lL dX1 .. ·lL 
dXN N'_oN !N"-O N ! 0 0 

results, where again CPk = cp(xk ) is used as an abbrevia­
tion. The quantities cr1, cr2 •• , , crN are defined as 
follows: The first N' of them are equal to cr', the 
next N" to cr", etc., and N = N' + N" + .... 
The integration is over a domain symmetric in 
the N variables, so that the integrand, although not 
symmetric, may be replaced by its symmetric part 

(39) 

Here C is a symbol for an arbitrary succession of 
quantities cr1, cr2 ••• , crN with the property that 
some N' of them equal cr', some N" equal cr", etc., 
in other words it has the same significance as in 
Sec. 2. The summation goes over all such sequences, 
whose total number is just the inverse of the factor 
in front. Once (39) is substituted as the integrand 
of (38) it is permissible to integrate over the re­
stricted domain (10) at the price of multiplying by 
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a factor NL Thus, (35) becomes 

N' N" ~ ~ 1L 
N4;o Z' N4;o Z" ... ~ 0 dXN 

(40) 

This is identical to n, in the form given by Eq. (14), if 

(41) 

This identity is established as follows. We recall 
the definition of the quantities Ek given by Eqs. 
(12) and (8) which can also be written 

(l/4'1l)(Ek - Ek-\) = IYk (k = 1,2, .,. ,N), (42) 

EN = O. 

Now multiply (42) by epk and sum over k from 1 to 
N. In view of EN = 0 and epo = 0 this sum is 

1 N N 

- 47r t; Ek_,(epk - epk-I) = t; IYkepk' (43) 

Thus, the quantity to be averaged on the left-hand 
side of (41) is a product of N statistically independent 
quantities 

IT exp {-4i 
Ek-,(epk - epk-I) }, 

k~1 11' 

so that the product sign may be taken outside the 
bracket 

Il \ exp { -4
i
7r Ek_,(epk - epk-I)}) 

g i~ depP(ep, Xk - Xk-I) exp {-4~ Ek-\ep} 

INI {DE; I(Xk - Xk-I)}. 
exp 16 2 k-I 11' 

(44) 

This is identical to the right-hand side of (41) 
provided D is set equal to 211'/0, as claimed. 

The expression for n thus obtained is of the 
general form discussed in the previous section, 
therefore it may be expressed in yet another form, 
namely as an integral over the fundamental solution 
of a certain partial differential equation. Application 
of the theorem of Kac to Eq (35) establishes the 
following 

Theorem 1. The grand partition function is 
expressible as 

n = L~~ depQ(ep, L; 0, 0), (45) 

where Q = Q(ep, x; epo, xo) is the fundamental solution 
of the partial differential equation 

{a/ax - D a2/aep2 - F(r/»)Q = 0, (46) 

that is to say the solution satisfying the initial condition 

Q(r/>, Xo; r/>o, :1'0) = EJ(ep - r/>o). (47) 

F(r/» is given by (36) and the constant D by (37). The 
function Q depends only on the difference x - Xo 
because F does not depend explicitly on x. Thus, we 
shall more appropriately write Q = Q(r/>, r/>o, x) and 
for abbreviation often omit the argument r/>o when 
it is understood to have the value zero. 

Theorem 1 is the central result of our paper. Let 
us make some comments on its significance. 

It is clear, first of all, that our result has its 
origin in two distinct calculations, the proof of the 
theorem of Kac and the representation of the grand 
partition function as a functional average. They 
represent two ways of "evaluating" the functional 
average and it is in the connection between the 
two end products that our interest lies. The details 
of the calculations are of a quite familiar kind, and 
it is apparent that the intermediate notion of 
functional average could be eliminated altogether. 
The really essential point is that in the iteration 
solution (Neumann series) of the integral equation 
(30) each term can be explicitly evaluated by a 
repeated application of the elementary formula 

Loooo dr/> (4~7r)! exp { - :: + ibr/>} = exp {-ab
2

), (48) 

(a > 0) 

and the terms turn out to be identical to the terms 
in the power series expansion (14) of the grand 
partition function. 

Nevertheless it would be wrong to conceal the 
importance of the functional average concept with 
its probabilistic interpretation, because it sheds light 
on the question: To what extent is the success of 
our analysis due to the partiCUlar features of our 
model? The two aspects of the calculation are 
characterized by different assumptions. In the proof 
of the theorem of Kac-at least in its integral 
equation formulation-no use is made of the special 
Gaussian form (15) of the transition probability, 
but only that the joint probability for succeeding 
steps is the product (17). This is the assumption 
that the random process r/>(x) is Markoffian. On the 
other hand, the explicit identification of the grand 
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partition function with the functional average is 
based on the Gaussian property, and on that alone. 

In order to bring out this point we shall make a 
digression from the principal topic of this paper and 
consider the averaging over general Gaussian random 
processes in some detail. A general Gaussian random 
process cf>(x) is defined by the postulate that for 
any finite number of points Xl, X2, ... , XN the joint 
probability density for cf>(Xk) in dcf>k is of the form 

(d t B)! { N N } 
e N/2 exp -! 2: 2: Bk1cf>kcf>1 , 

(21l') k~l l~l 
(49) 

where the elements of the matrix B are functions of 
the Xk alone. The matrix B must be positive definite 
because otherwise the normalization integral would 
not converge, but this is not the only condition to 
which it is subject. Let ak(k = 1, 2, .,. , N) be 
arbitrary real numbers. Then 

< exp {i t, akcf>(Xk)}) 

= exp { -! t, t Cklaka ) , 

because the left-hand side is just the N-dimensional 
Fourier transform of the function (49) which can 
be explicitly evaluated by the obvious generalization 
of the formula (48). If (50) is differentiated with 
respect to ak and al (not excluding k = l) and then 
all a are set zero, one obtains 

(cf>(Xk)cf>(X I» = Ckl = C(Xk, Xl)' (51) 

Thus, B is necessarily the inverse of a matrix C 
whose elements are given by the second equation 
of (51) with C(x l , X2) a single function (the "co­
variance function") of two variables. This function 
then completely characterizes the statistical nature 
of cf>(x); however, it too is not arbitrary, but subject 
to the condition that for any choice of the points 
xk(k = 1, 2, ... , N; N arbitrary) the matrix Ckl 
must be positive definite. 

All this generalizes in an obvious manner to the 
case when the independent variable X ranges over 
a three-dimensional space, say, and also to the case 
when a certain finite number cf>1(X), cf>2(X), •.• cf>k(X) 
of processes are involved. In the latter case the 
covariance function is replaced by the covariance 
matrix 

(cf>a(XI)cf>p(X2» = C aix l , x2). (52) 

The formula (50) is the basis for the application 
to statistical mechanics. If all the a's are put equal 
to a common constant we get, integrating over the 

X's, 

<[iL 
dxe,a¢(x) J) = i L 

dXI •.. Jo
L 

dxs 

X exp {-~2 t, t C(Xk, Xl)}' (53) 

If it were not for the terms k = l, this would be 
the partition function of a canonical ensemble for 
a system consisting of N particles between which 
there are two-body forces with a potential C(XI, X2).13 
When several Gaussian functions cf>a(x) are involved 
then the corresponding formula refers to the statis­
tical mechanics of a system which contains different 
species of particles and (52) then just gives the 
interaction potential between the a and (3 species. 

This is the point of contact of the present work 
with the paper of Edwards.3 There the averaging 
over function space was done in a formal way; 
however, the method prescribed l4 shows that 
averaging over a Gaussian random process is 
involved. It is clear that no property of the inter­
particle potential needs to be used other than that 
it is the covariance function (or matrix, in the case 
of more than one species) of a Gaussian random 
process. This shows that the representation of the 
partition function as a functional average has great 
generality, although it should be said as a precaution 
that the positive definiteness condition on the co­
variance function is certainly not a natural con­
dition if that function is to be interpreted as a 
potential. 15 We also see now that the really special 
feature of our model is the Markoffian nature of the 
random process associated with it in the sense just 
explained. This is a severe restriction. There is no 
possibility for application to three-dimensional sys­
tems, because the concept of a Markoffian process 
involves the idea of a succession in "time" and this 
is meaningless when there is more than one inde­
pendent variable. More importantly, even a one­
dimensional Gaussian process is not Markoffian in 
general. An interesting process, both Gaussian and 
Markoffian, is the Ornstein-Uhlenbeck process 

13 This observation lies at the root of a recent paper on the 
statistical mechanics of a one-dimensional system, M. Kac, 
Phys. Fluids 2, 8 (1959). 

14 Reference 3, Eq. (1.7). 
16 If the positive definiteness condition is not respected then 

one deals with "integrals" of the type (48) with negative 
parameter a. This may not be fatal as long as the integral is 
only a symbolic expression which stands for the right-hand 
side. However, it is quite easy this way to get into contra­
dictions because formal manipulations of such "integrals" 
may be illegitimate on account of their Jack of convergence. 
There is a legitimate way of overcoming this.difficu~ty du~ to 
A. J. F. Siegert, but we do not want to go mto this subject 
here. One of us (A. L.) is indebted to Professor Siegert for 
letting him see his recent work before publication. 
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defined by the covariance functionl6 

( ) ( » C -C.lx,-x,1 
<ef> XI ef> X2 = Ie , (54) 

With an interparticle potential of this form it is 
then possible to investigate the statistical mechanics 
in much the same detail as for our model. I7 For 
the general case the representation of the partition 
function as a functional integral is a device which 
mayor may not be a convenient aid in approximate 
calculations, but progress of the kind that we are 
reporting here on the one-dimensional plasma cannot 
be expected in general. 

It remains to point out the specific connection 
between our work and the preceding considerations. 
Let ef>(x) be the Wiener process as defined in Sec. 3 
and normalized by the condition ef>(0) = 0, and 
let us associate with a particle species (having charge 
(J', say) the process which is just a numerical 
multiple of it 

ef>'(X) = (J'ef>(x). (55) 

The processes ef>'(X) , ef>"(X) , '" are Gaussian and their 
covariance matrix is given by the elements 

C""(X I , x2) = W(x I )ef>"(X2» = (J'(J"<ef>(X I )ef>(X2» 

= 2 D(J' (J" min (XI, X2), (56) 

as one may verify easily by carrying out the relevant 
integrals. On the other hand, the total potential 
energy, i.e., the sum of (7) and (9), is 

N k-I N N 

V = -21r L L (Jk(JZ IXk - xzl + 21r L (Jk L (JZXI 
k-2 Z-I k-I Z=I 

N N 

= 21r L L (Jk(JZ min (Xk' xz). 
k-I Z-I 

Thus, in view of (37) 

V 1 N 
-= - L 

() 2 k-I 

N 

L CkZ(Xk, x z), 
Z-I 

(57) 

(58) 

the subscripts being interpreted in the obvious sense 
as referring to the charges of the particles which 
label the rows and columns of the matrix C. Now 
the identification of the right-hand side of Eq. (35) 

16 M. C. Wang, and G. E. Uhlenbeck, Revs. Modern Phys. 
17,323(1945). . IPh . "P d' 

17 M. Rae, "Probability in Cl~sslCa YSlC.S, rocee mg~ 
of the Seventh SympoBt'!1m m Appl2ed ~ athemat2cB of the Amen­
can Mathematical Soc2ety (McGraw-HIll Book Com~any, Inc., 
New York, 1957). It appears to be the firs~ p,ublished slfg­
gestion of usin~ stochastic averaging as an aId III calculatmg 
partition functIons. 

with that of Eq. (3) is a simple matter of using the 
formula (53). This derivation of (35) is even simpler 
than the one presented at the beginning of this 
section. We have presented the latter because is 
presupposes less familiarity with the ideas of a 
Gaussian random process. IS 

One final remark. The Wiener process is not 
"stationary," i.e., explicitly independent of time, 
since the condition ef>(0) = 0 puts the Brownian 
particle at the origin at a given time thus dis­
tinguishing this instant from all others. This implies 
that the covariance function is not a function of 
the difference XI - X2 alone [cf. Eq. (56)]. The 
general identification of the covariance with the 
interparticle potential demands that the process 
be stationary because the interparticle potential is a 
function of the difference of the two position 
variables. But the one-dimensional plasma is an 
exception. Here the total potential energy is not 
just the sum of pair potentials [cf. discussion in 
Sec. 2]. This explains how it comes about that the 
Gaussian random process appropriate to this problem 
is the nonstationary Wiener process. 

5. THE CHARACTERISTIC VALUE PROBLEM 

We now assume that all charges are rational 
multiples of each other, so that with a proper choice 
of the charge unit (J', (J", etc., will be integers. For 
convenience we also choose the unit of length in 
such a way that D = 1. 

The coefficient function F(ef» in Eq. (46) is now 
periodic with period 21r. This makes it possible to 
reduce the problem posed by Theorem 1 to the 
characteristic value problem of an ordinary dif­
ferential operator on a finite interval of the inde­
pendent varible. Let 

., 
Q(ef>, x) = L Q(ef> + 27m, x). (59) 

This function is the "periodic fundamental solution" 
of the partial differential equation (46), i.e., for 
X = 0 it reduces to 

., 
Q(ef>,O) L o(ef> + 27m). (60) 

ll=-CO 

It is clear that 

12 = L'r def>Q(ef>, L). (61) 

Since F does not depend on x, we may use the method 
of separation of variables. This leads to the charac-

18 An excellent general introduction to this subject is con­
tained in Wang and Uhlenbeck, reference 16. 
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teristic value problem 

{d2jdcf>2 + F(cf» ly(cf» = 'Yy(cf» 

with the boundary condition 

y(cf> + 27r) = y(cf». 

(62) 

(63) 

We shall label the characteristic values and functions 
with a subscript m (m = 0, 1, 2, ... ) if the need 
arises. The functions are assumed to be normalized, 
orthogonal 

and to form a complete set for functions with period 
27r. The expansion of Q in terms of these functions is 

Q(cf>, x) = L e~mrYm(O)Ym(cf». (65) 
m=O 

Hence, the grand partition function appears ex­
hibited in the following form 

(66) 

where the coefficients are 

(67) 

The 'Ym and the Ym depend parametrically on z', z", 
etc., which enter into the definition of F(cf». 

Let us make some general remarks on the charac­
teristic value problem. It is a generalization of the 
type known in the mathematical literature as Hill's 
problem. 19 The only difference is that our function 
F(cf» is complex in general while in the Hill problem 
the corresponding function is real. This has the 
consequence that our problem, while being self 
adjoint in the real sense, is not necessarily Hermitian. 
Thus, it cannot be excluded a priori that charac­
teristic values and functions be complex, but it 
seems likely that the expansion theorem still holds.20 

The function F has the symmetry 

F*( -cf» = F(cf» , (68) 

which does imply that together with any charac­
teristic function y(cf» another characteristic function 
is y*( -cf», the corresponding values of 'Y being 
complex conjugates. But from this it only follows 
that Q has the same symmetry (68) and that the 

19 E. T. Whittaker and G. N. Watson, A Course in Modern 
Analysis (Cambridge University Press, New York, 1927), 
Chap. XIX. h I I 

20 See E. HUb, Math. Ann. 71, 76 (1912) were a C ose y 
related problem is studied. 

terms of the expansion (66) are either real or occur 
in complex conjugate pairs. 

Let us consider now the asymptotic behavior of 
Q as L ~ co. It is clear that those terms of (66) 
survive which have the largest real parts for the 
'Y's. Thus, 

(L ~ co), (69) 

where the dash indicates that the summation is 
extended only over those terms for which Re 'Ym is 
the maximum.21 As just remarked, the terms of this 
sum are either real or occur in complex conjugate 
pairs, but one at least must be real otherwise the 
sum could not be positive for all L which would 
preclude the asymptotic equality with the positive 
function Q(L). Let us call this real value 'Yo. By 
taking the logarithm and comparing with (4) we 
have obtained 

Theorem 2. 
by 

The thermodynamic pressure is given 

P = 27r'Yo, (70) 

where 'Yo is the largest real characteristic value oj the 
problem (62) with F being given by (36).22 

Regarding the magnitude of 'Yo we have the 
inequalities 

o < 'Yo ::; (z' + ~" + ... ), (71) 

the equality being possible only in the trivial case 
of no interaction (all (T'S zero). This follows from 
the corresponding inequalities 

1 < Q(L) ::; exp [(z' + z" + .. ·)LJ \.2) 

for the grand partition function, the second of which 
depends on the non-negative nature of the potential 
energy [see Eq. (13)]. 

We shall now discuss two general questions con­
cerning the thermodynamic properties of the model. 
The first of these is the question of charge neutrality. 
It is intuitively evident that in the infinite system 
limit the total charge density should be zero 

(T'n' + (T"n" + '" = O. (73) 

This is not in contradiction with the fact that for 
any fixed value of L the mean particle numbers can 
be freely adjusted by varying the parameters z', z" 
etc. The point is that as L becomes larger it becomes 

21 If is not excluded, of course, that this sum contains a 
single term; indeed, this should be expected to be the case 
in general. However, for special values of the z's the possi­
bility of a degeneracy cannot be excluded. 

22 This (in a more restricted case) is the content of Theorem 
4 of 1. 
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"more and more difficult" to do this, and as L ~ co 

for any fixed z values, (73) becomes established as 
a limiting relation. We shall now prove this. 

Hitherto cp was always a real variable, but once 
the characteristic values 'Y for Eq. (62) are deter­
mined the corresponding functions y(cp) can be 
analytically continued into the complex cp plane. 
This follows from a general theorem on differential 
equations with analytic coefficients.23 Indeed, our 
equation has no finite singular points so that its 
solutions are entire functions, i.e., regular in the 
whole open complex plane. Together with any 
characteristic function y(cp) with characteristic value 
'Y, consider the new function Y(cp) = y(cp - iK) 
with K an arbitrary real number. Evidently 

{d2jdcp2 + F(cp - iK)} Y(cp) = 'YY(cp), (74) 

and furthermore Y has the period 211" because 
Y(cp + 211") - Y(cp) is an entire function which 
vanishes on the line 1m cp = iK and hence vanishes 
everywhere. Now F(cp - iK), regarded as a function 
of the real variable cp, arises out of F(cp) by the 
substitutions 

z' ~ z'etT'K, 

z" --+ z"e(f"", (75) 

etc. 

Thus, we have constructed a characteristic function 
with the same value of 'Y of the problem (62) trans­
formed by the substitution (75). This means that 
we have proven the following. 

Theorem 3. The characteristic values 'Y of the 
problem (62), regarded as functions of the parameters 
z', Zll, etc., are invariant under the group of sub­
stitutions (75). This means that the quantities 

(76) 

are in effect independent of K for any values of the 
z's. Differentiating with respect to K and setting it 
equal to zero it follows that 

{O"'z' a/az' + O""z" ajaz" + ... h(z', z", ... ) 

= o. (77) 

In particular, this is true for 'Y = 'Yo and now the 
stated conclusion follows from Eqs. (5) and Theorem 
2. 

The charge neutrality condition implies that if 
all nonvanishing24 

0" values are of the same sign the 

23 Reference 19, p. 194. 
04 Vanishing charge numbers mean added ideal gas compo­

nents without interaction. This is easily seen to be compatible 
with Theorem 2. 

corresponding densities vanish. This is quite 
obvious physically; If only charges of one sign are 
admitted through the "membrane" separating the 
system from the reservoir [cf. discussion of Sec. 2], 
a "sheath" builds up which prevents particles to 
enter beyond the sheath region into the system. 
It is less obvious what mathematical property of 
the characteristic value problem is responsible for 
this radically different behavior of the case of all 
O"'s having one sign. To clear this up it is convenient 
to reformulate the problem in terms of the complex 
variable u = ei

1>. We then have 

{_u2 d2 jdu2 
- u d/du + z'u" 

+ z'v" + ". }y(u) = 'YY(u), (78) 

and the periodicity in cp is replaced by the demand 
that y(u) be single valued in u. Now, the differential 
equation (78) has two singular points, u = 0 and 
u = co, They are of the irregular type when O"'s 
with both signs occur; u = 0 is of the regular type, 
u = co irregular, when all O"'s are positive; and the 
other way round when all O"'s are negative.25 To be 
specific, let all of them be positive. Then two inde­
pendent solutions of the equation exist25 of the form 

y(u) = uV-'Y f(u) , (79) 

where feu) is regular in the neighborhood of the 
origin. Evidently this is single valued only when 

(80) 
(m = 0,1,2, ... ). 

The remarkable fact is that the characteristic values 
are independent of the z's. In particular 'Yo = 0 which, 
as we have seen, implies the vanishing of the densities 
as well as the pressure. This analysis shows that 
certain striking features of the characteristic value 
problem, formulated at first in the real domain, are 
uncovered easiest by going into the complex plane. 
We have here the example of a problem where the 
"perturbation" does not affect the spectrum of 
characteristic values. 

The second general question concerns the con­
tinuity of thermodynamic functions. We have seen 
how the latter are derivable from 'Yo given as a 
function of z', z", etc. 'Yo has been defined as the 
largest real characteristic value for any given values 
of the parameters, but in some respect this is not 
a natural labeling. Characteristic values may be 
labeled alternatively by means of their association 
with the functions y(cp) which change smoothly as 

2. Reference 19, p. 197. 
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the Z parameters are varied from zero up. In such 
a labeling one of the 'Y's tends to zero with decreasing 
z's which is thus 'Yo for sufficiently small z values. 
But it is in principle possible that a lower value may 
with increasing z's, actually "overtake" 'Yo. It is evi­
dent that if this happens "the largest characteristic 
value" suffers a discontinuity in at least one of its 
z derivatives which leads to a discontinuity of some 
of the densities [cf. Eqs. (5»). As the pressure is 
continuous, we get in the pressure-density diagram 
the horizontal portion typical of a phase transition. 

Does this happen? We do not have a definite 
answer to this question. For a one-dimensional 
system of particles interacting with forces of finite 
range the answer is negative,26 but our system 
is not of this type and a special investigation is 
needed. We have a partial result in this direction, 
and in order to formulate and prove it we need to 
broaden somewhat the characteristic value problem 
(62), namely, by replacing the condition of perio­
dicity by 

y(cp + 211") = ±y(cp). (81) 

Characteristic values where the plus sign applies 
will be called of type I, where the minus sign applies, 
of type II. 

Theorem 4. Let ffi be a connected region in the 
space of z', z", ... which includes the point z' = z" = 
. .. = 0 and which is such that for all of its points 
all characteristic values (of both types) are real. Then 
within ffi the largest characteristic value is not crossed 
by another one. 

When all z's vanish F(cp) = 0 and the problem is 
trivial. The characteristic values of type I are 
given be (80) and those of type II by 

'Y = -em + t)\ (82) 
(m = 0,1,2, ... ). 

All of them are doubly degenerate except the single 
value 'Yo = 0 of type I. Moreover, those of type I 
alternate on the real line with those of type II. It is 
clear that when the z's are varied in ffi the largest 'Y 
cannot be crossed by another one without this 
ordering being violated and if that is so there is a 
point in ffi at which one of the characteristic values 
of type II coincides with one of type I (which may 
or may not be the largest one). But this is impossible 
because the two corresponding characteristic func­
tions would have to satisfy 

(83) 

26 L. Van Hove, Physica 16, 137 (1950). 

but the quantity inside the bracket is not a constant. 
It changes sign upon increasing the argument by 
211". This proves the theorem. 

As a minimum the region ffi includes those points 
where Zl = Z_l> Z2 = Z_2, etc. (the subscripts are the 
values or the corresponding o-'s). Then the problem 
(62) is real, thus also Hermitian, so that all 'Y's are 
real. Within this region then no phase transition can 
occur. It must be remembered that due to the 
invariance under the transformation (75) actually 
more points belong to ffi: all of those for which 

ZljZ_l = (Z2jZ_2)! = ... . (84) 

By a transformation of the form (75) the common 
value of these ratios may be brought to unity. In 
the case studied in I, namely a two-component sys­
tem with charges equal in magnitude and opposite 
in sign, this condition is fulfilled trivially. We have 
excluded the possibility of a phase transition in 
those cases when a "detailed" balancing of charge 
obtains, i.e., a balancing for any pair of components 
carrying a charge of the same magnitUde and 
opposite sign. Of course, the region ffi may be 
larger, and it would be interesting to know how 
large, and also (if it is smaller than the totality 
of all z values) whether the possibility of a phase 
transition can be excluded on grounds independent 
of Theorem 4. It goes without saying that if a 
phase transition is possible,27 a proof would be of 
great interest, as well as an analysis of its physical 
nature. 

6. THE PLASMA LIMIT 

In this section we restrict our considerations to 
the simplest case studied in I. Thus, we have only 
two kinds of particles with 0- = ±1, and the corre­
sponding values of z may be assumed equal without 
loss of generality. The problem is then to solve for 
the function Q(cp, x) which is the fundamental 
solution of the equation 

{ajax - a2 jacp2 - 2z cos cp}Q(cp, x) = o. (85) 

The problem depends parametrically on the 
quantity Z:8 and we propose to investigate it in 
the limit of large z. As pointed out in 1,29 this limit 
corresponds to the true "plasma state," i.e., a state 
when the charges move independently of one 
another in the first approximation, and the kinetic 
energy is large compared to the potential energy. 

27 We do not think this is likelv. 
28 z/Dq 2 = (JZ/21rq2 in ordinary units. 
29 Section 8. 
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In I the treatment was based on the asymptotic 
analysis of the characteristic value problem (the 
Mathieu equation). Here we want to show that a 
more direct, even if somewhat heuristic, treatment 
of Eq. (85) gives easily the dominant behavior in 
the limit of large z. 

It is convenient to split off a factor and write 

Q(IjJ, x) = e2ZXQl(ljJ, x), (86) 

so that Ql is the fundamental solution of 

la/ax - a2/a1jJ2 + 4z sin2 !ljJjQl(ljJ, x) = O. (87) 

N ow that the coefficient function is non-negative, the 
equation can be interpreted as a diffusion problem 
with absorption. The "absorption coefficient" 
4z sin2 !1jJ is large everywhere except in the im­
mediate neighborhoods of the points IjJ = 21!'n 
(n integer). Hence, QI can be expected to be very 
small everywhere except in these neighborhoods. 
But again, all of these except IjJ = 0 can be ignored 
because initially Q1 has a 0 singularity at IjJ = 0, and 
the other points with no absorption are separated 
from this by regions of very strong absorption. Thus, 
it seems reasonable that a good approximation to 
Q can be obtained by replacing (87) by the equation 

la/ax - a2 /a1jJ2 + zIjJ2jQl(ljJ, x) = 0, (88) 

which represents correctly the behavior of the 
absorption coefficient near IjJ = O. But this problem 
has the exact analytic solution 

as may be verified by substitution. In addition, the 
integration over IjJ can be carried out explicitly and 
one obtains 

(90) 

This is only an approximation, of course, the true n 
being larger because the "absorpton coefficient" has 
been increased in the transition from Eq. (87) to (88). 
Remembering the definition of 'Yo we get in the same 
approximation 

(91) 

This is the beginning of the asymptotic development 
of 'Yo in inverse powers of Zl

/
2 quoted in 1.29 The 

first term leads to the ideal gas law, the next to the 
"Debye-Huckel correction.,,30 

It does not seem easy to improve on the formula 
(91) with the present method. The root of the diffi­
culty is that we are not looking for an approximation 

30 For a discussion of the validity of the Debye-Huckel 
treatment see N. Balazs, Phys. Fluids 4, 1259 (1961). 

to Q(IjJ, x), nor even to n = n(L), but rather to the 
ultimate exponential rate of growth of n as L -7 en. 

That this should not be easy is not surprising 
because the asymptotic analysis of the periodic 
solution of the Mathieu equation is involved and 
that is quite an elaborate affair. 31 Nevertheless, it is 
gratifying that at least the dominant behavior can 
be understood with the heuristic discussion of this 
section. If Eq. (88) is attacked by the method of 
separation of variables the characteristic value prob­
lem for the Hermite functions results. 32 That the 
analysis in the limit of large z leads to this problem 
has already been observed by Prager.2 An approach 
to the Mathieu problem based on the Hermite 
functions as a first approximation is given by 
Morse and Feschbach.33 

7. THE REDUCED DENSITY FUNCTIONS 

We come now to a subject which demonstrates 
forcefully the superiority of the functional integra­
tion method over the direct treatment of 1. We shall 
construct explicit and exact expressions for the 
reduced density functions. 

These functions form a hierarchy of ever increasing 
complexity and are defined as follows. fa, (XI) dX 1 is 
the probability that the element dX1 is occupied by a 
particle of charge 0'1; fa,a,(x 1X2) dX1 dX2 is the joint 
probability that the two elements dX 1 and dX2 are 
occupied by particles of charge 0'1 and 0'2, respec­
tively; and so on. In contrast to the probability 
densities (2) the function f refer to occupation 
probabilities regardless of the presence of other particles 
in the system volume. There is a connection between 
the 1's and the probability densities (2) which can be 
written down in the most concise form by making use 
of generating functionals introduced by Bogoliubov34 

and recently discussed by Green.35 Let us introduce 
arbitrary functions .la' (X), .Ia"(x), etc., one associated 

31 E. L. Ince, Proc. Roy. Soc. Edinburgh 46, 316 (1926). 
Ince wrote "If anyone had the courage to push the develop­
ment a stage or two further he would greatly enhance the 
value of an important expansion. But any reader who at­
tempts to verify [my] results given above will realize that the 
work involved would be tremendous." 

32 The equation differs only in a factor i in front of the 
first term from the Schriidinger equation for a harmonic 
oscillator. 

33 P. M. Morse and H. Feshbach, Methods of Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 
1953), p. 1416. 

34 N. N. Bogoliubov, Problems of a Dynamical Theory in 
Statistical Physics (in Russian). Also available in English 
translation by E. K. Gora, Studies in Statistical Mechanics 
(Interscience Publishers, Inc., New York, 1962), Vol. 1. 

35 M. S. Green, "Some Applications of the Generating 
Functional of the Molecular Distribution Functions" in Vol. 
III of Lectures in Theoretical Physics held at the University 
of Colorado in 1960 (Interscience Publishers, Inc., New York, 
1961 ). 
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with each species of particles, and form the quantity ferentiation with respect to 

and so on. It is understood that after the functional 
differentiation all t's are set identically equal 
zero.34

•
36 

We now make the important observation that <I> 
(apart from the factor 12-1

) has a structure very 
closely resembling that of the partition function 
itself. In fact, the difference is only that with each 
integration variable Xk we now have a factor 
Zk + tuo(Xk) instead of just Zk as before. Therefore 
the analysis of Sec. 4 which led us to the formula 
(35) can be duplicated with these obvious and simple 
changes. The analog of Eq. (35) for <I> is then as 
follows 

<I> = ~ < exp i L 
dxF(fjJ(x) , x) I fjJ(O) = 0) , (94) 

where the function F is now 

F(fjJ, x) = [z' + tu,(x)]eiU '" 

+ [z" + tu,,(x)]e
iU

"" + (95) 

The functional dependence of <I> on tu" tu'" etc., 
comes through the functional dependence of F. The 
formula (94) together with (95) represents a closed, 
exact expression for the Bogoliubov functional of the 
reduced density functions in the one-dimensional 
plasma. 

The theorem of Kac (cf. Sec. 3] could now be 
applied thus expressing <I> in terms of the funda­
mental solution of a partial differential equation. 
The method of separation of variables is inapplicable, 
however, because the coefficient function (35) is 
explici tly dependent on x through the functions 
tu" tu'" etc. Fortunately this causes no difficulty 
because we are really not interested in <I> but rather 
in its functional derivatives with respect to the 
t's. For these a different method of evaluation 
suggests itself. 

Since the integral over F occurs as the argument 
of the exponential function, every functional dif-

brings down factors 

(96) 

where F is now just (36) since the fs are to be put 
zero after the functional differentiation with respect 
to them. It is clearly possible to arrange the notation 
so that the successive arguments of f form an 
increasing sequence, provided we leave the corre­
sponding charges arbitrary. Thus, it will be under­
stood that 

o < XI < X2 < ... < L. (98) 

We now break up the integral in the exponent into 
a sum 

l L IX' lX' dx= dx+ dx+ .. ·. 
o 0 Xl 

(99) 

The Wiener average is over all continuous functions 
such that fjJ(O) = O. We carry out this averaging 
by making, initially, a number of additional restric­
tions fjJ(x l ) in dfjJj, fjJ(k2) in dfjJ2, etc., and afterward 
integrating over all fjJI, fjJ2, etc. In the restricted 
Wiener integrals the factors (96) are just constants, 
and according to (99) we just have product of factors 
of the form 

< exp {t~, dXF(fjJ(X»} I fjJ(Xk-l) 

= fjJk-l,fjJ(x k) = fjJk)' (100) 

We have seen in Sec. 3 that this is just Q(fjJk, fjJk-l, 

Xk - Xk-l), the function Q being defined in Theorem 
1. Thus, we obtain the following results 

fu,(xI) = ~ i: d¢ i: d¢1 

X Q(¢, ¢I, L - xI)e iU''''Q(¢lI 0, Xl), (101) 

fu,U,(X,X2) = Z~2 i: d¢ i: dfjJ2 i: d¢j 

X Q(¢, ¢2, L - x2)eiU''''Q(¢2, ¢I, X2 - XI) 

(102) 
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and so on. When the u's are integers (which will be 
assumed in the following) the function Q may be 
replaced in these formulas by 

ro 

Q(cp, cp', x) = L: Q(cp + 27m, cp', x) (103) 

and the integration limits changed to -71" and 71". 

Q is periodic in both variables cp and cp', and its 
expansion in terms of the characteristic functions 
of the problem (62) is 

00 

Q = L: ehXYm(CP)Ym(cp')· (104) 
m=O 

The results we have obtained are exact but they 
do not quite correspond to the customary definitions 
of the density functions. The reason is that our 
functions depend not only on all position variables, 
but even on L, the size of the system. In the cus­
tomary definition the limiting form of these functions 
is meant, namely, the limit 

L - Xn -t a::> , (105) 

These limiting functions truly express the bulk 
properties of the model inasmuch as "surface effects" 
have been removed. It is quite easy to carry out 
the limit (105) provided one notes that as x -t a::> 

(106) 

and of course the corresponding limiting form of Q.
36 

The results are 

t., = z, r .... dcp\Yo(cp\)ei·,¢,yo(CP\) , (107) 

t.,., = zlz2e-~o(x,-x,) r .... dCP2 r .... dCPIYO(CP2)e i.,q" 

X Q(CP2' CPl, X 2 - xl)e i ·,q,'YO(CP1) ' 

-~o(X'-X,) fT dA. f" dA. fT dA. = Z1Z2Z3e 
-T 'f'3 -T 'f'2 -T 'f'1 

X YO(CP3)ei·,q,'Q(CP3, CP2, X3 - x2) 

(108) 

(109) 

and so on. These functions are manifestly translation 
invariant. Furthermore, they satisfy the "product 
condition." This means that if a group of arguments 
is far removed from another group than the J 
corresponding to the whole group is the product of 
the two 1's corresponding to the two separated 

36 We ignore here the possibility of degeneracy for the 
largest characteristic value. 

groups. This is shown by making use of the asymp­
totic relation (106) for that factor Q whose x argu­
ment is the separation between the two groups. 

Let us consider the simplest of these functions. 
J., dx is the probability that an element dx is occupied 
by a particle of charge 0", therefore, J., should also 
be the mean number density for this species. This, 
we have seen, is 

n' = z' a'Yo/ az' . (110) 

Let us show that the right-hand sides of Eqs. (107) 
and (110) are identical. We have 

d2Yo/dcp2 + Fyo = 'YoYo. (111) 

Differentiate this with respect to the parameter z'. 

d
2 

(ayo) aF F ayo a'Yo ayo 
dcp2 az' + az' Yo + az' = az' Yo + 'Y az' (112) 

Now multiply (111) by aYojaz', (112) by Yo and 
integrate them between -71" and 71". The difference of 
the two equations so resulting is just 

f .. aF 2 a'Yo f" 2.:i-L 
-a -, Yo dcp = -a ' Yo wp _ .. z Z -T 

(113) 

which, in view of the normalization of Yo, is the 
identity desired. 

Let us consider now the two particle density 
functions (108). By means of the expansion (104) 
we obtain37 

'" "B B e-(~o-~m)x 
,L.-i m,O'l m,0'2 • 

m=O 

The coefficients are 

(114) 

(115) 

Clearly J •• . " is symmetric in the two subscripts 
which run over all particle species. 

Certain general properties of these functions will 
now be shown under the hypothesis of "detailed 
charge neutrality." This means that the species 
occur in pairs of equal and opposite charge and the 
corresponding values of z are equal 

(116) 

This implies that the corresponding densities are 
also equal 

(117) 

In more generality, all reduced density functions 
are invariant under a simultaneous change of sign 
of all their charge subscripts. 

37 The variable x is here always taken positive. This is no 
restriction on generality. 
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f",IXI 

o~~~~~~~~~~-L~~ o 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
--.x 

FIG. 1. Two particle density functions. 

Theorem 5. Suppose there is detailed charge 
neutrality. Let ~. be arbitrary real numbers, one 
associated with each particle species. Then the function 

(118) 

is positive and monotone decreasing. To prove this, 
note that in the case of detailed charge neutrality 

F(ep) = 2z1 cos ep + 2Z2 cos 2ep + "', (119) 

so that the basic characteristic value problem (62) 
is real. Hence, in this case, all I'm are real as well as 
all Ym(ep). But then 

B m ._. = B!, .• , (120) 

and therefore the function (117) is 
ro 

L I L ~.Bm .• 12 e-(Yo-Ym)z. (121) 
m-O 

The conclusion of the theorem is hereby exhibited. 
The physical significance is best appreciated by a 

choice of suitable values for the ~.. It is easy to 
see, for instance, that the functions f •. -.(x) and 
f •.• (x) + f •. -.(x) are monotone decreasing. Also 
t.,-.(x) - tv,v(x) are positive and monotone de­
creasing. The latter fact means that it is more 
likely for two particles, a given distance apart, to have 
equal and opposite charges than the same charge, and 
the difference decreases with distance. This is quite 
reasonable. It is a manifestion of the attraction 
(repulsion) between charges of opposite (same) sign. 

There is a more subtle effect connected with the 
tendency for the two particles in dX I and dX2 to 
have the same magnitude of their charge. To show 
this, we consider any even function of the charge 
0', such as 10'1 for instance, and calculate its co­
variance at the two points XI and X2 = XI + x. Let 

~v be this function, and let us denote by ( .•• ).v 
averaging over charges. The covariance is 

«~ •. - (~ .. )av)(~v, - (~u,)av) )av 

(~.Jv,)av - <~.'>av(~.,).v 

I: L ~ .. ~.,[t •..• ,(x) - 1 • .1.,]· (122) 

Since ~. = ~-v we can ignore the minus sign in (118), 
and now the theorem implies that the expression 
(122) is positive, since it obviously tends to zero 
as X ~ CXl. Thus ~. at the point Xl and ~v at the point 
Xz are positively correlated random variables. 

Certain rather plausible properties of the two 
particle density functions are not implied by our 
theorem. In particular, no assertion is made about 
the functions f •.• (x) although it seems likely on 
physical grounds that they are monotone increasing 
functions of x. To check this, we have performed 
numerical computations in the simplest case of a 
two-component plasma with 0' = ±1 and Zl = Z_I' 

In this case the characteristic value problem is just 
the Mathieu equation 

d2y(cp)/dq/ + 2z cos cpy(cp) = 1'y(cp) , (123) 

and detailed tables are available on the periodic 
solutions as well as the corresponding values of 1'.38 

The Mathieu functions are given in terms of the 
coefficients of their Fourier series which converge 
rapidly. Therefore the integrals Bm .• of Eq. (115) 
can be also expressed as fast converging series with 
tabulated numerical coefficients. The decrease with 
m is also fairly rapid, although this depends on the 
value of Z,28 and becomes worse with increasing z. 
We present the results on the accompanying figure 
for three representative values of z. For convenience 
of physical interpretation the unit of distance is the 
mean interparticle distance n -I. The decreasing 
functions arefl,-l(x), the increasing onesfJ,l(x). We 
note that for larger Z the approach to the asymptotic 
value is slower and the deviation from it smaller at 
small distances. For very small values of Z the 
approach to the asymptotic value takes place in a 
distance small compared to the mean interparticle 
distance. This is a manifestation of the "condensa­
tion" into pairs of oppositely charged particles in 
this limit. The distance between members of a pair 
becomes small compared to the distance between 
pairs. This is a confirmation of the picture of the 
system obtained in I on thermodynamic grounds.39 

38 National Bureau of Standards, Tables Relating to M a!hieu 
Function~ (Columbia University Press, New York, 1951). 

39 Section 9. 
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The master equation of a set of independent equivalent spins contains only one undetermined 
constant, the rate constant. If one assumes the local field to be altered by the field produced by the two 
neighboring spins, one can formulate a set of equations for the average of one, two, three, etc., spins. 
On assuming an Ising interaction between the spins, weak compared to the coupling with the heat 
bath, we can terminate the hierarchy and solve the problem of a linear chain with periodic boundary 
conditions by Fourier-transformation. The resulting secular equation determines two sets of relaxation 
times and two sets of eigensolutions. An explicit solution for the spin averages is given for the initial 
condition describing a localized excitation. Similarities with, and differences between, this and the 
random walk problem is pointed out. 

1. INTRODUCTION 

T HE master equation for a set of Ising spins can 
be obtained in a simple way provided the 

coupling between the spins is small compared to 
the coupling between the spins and the temperature 
bath. The problem is explicitly solvable for a one­
dimensional chain as long as the spin can take only 
two values. In this case the conditions of detailed 
balancing determines the rate matrix elements 
except for a common proportionality factor which 
determines the time scale. Extension to more than 
one dimension cannot be done without further 
assumptions, hence the present calculation serves 
as an exploratory model only. It is not possible to 
describe a cooperative phenomenon this way. This 
will be done in a subsequent paper. 

The calculations are based on a model suggested 
by Glauber.! His calculations are in the strong 
coupling limit, ours in the weak coupling limit in 
the sense that the external field is considered pre­
dominant. 

2. UNCOUPLED N-SPIN SYSTEM 

The probability distribution of an N-particle 
system of spins that has two components only is 
given by a function P(u!. U2 ••• UN; t) which has 
2N possible values for its spin arguments: Ui = ±! 
(i = 1, ... N). Hence, the time behavior of such a 
function can be described by a matrix 

P({U;}; t + r) 

the direct product of all individual 2 X 2 matrices 
N 

Q = II Wi = W! X W2 .. , X WN' (2) 
i=l 

These matrices describe evolution in time of the 
probability of the individual spins. 

P(Ui; t + r) = I: W(Ui I u:; r)P(u:; t). (3) 
tri' =""=1/2 

Equation (3) can be obtained by reducing P(\ud), 
i.e., summing over all spin variables Uk excluding 
Ui, and by using the special form of n given by (2). 

In order to preserve the normalization of the 
probability at all times, we have to require that 
each sum over a row is equal to one. 

L Q({ud I {u:}; r) = 1. (4) 
{ O'"il 

In particular, in Eq. (3), 

W_+ + w __ = 1. (5) 

In order to obtain the master equation or Pauli 
equation of the system, we subtract from each side 
P(u; t), divide by T, and take the limit for T -? O. 

ap(u) '" '" -----;;t = ~ W(u I u')P(u') - ~ W(u' I u)P(u). (6) 

(To simplify notation let u without an index 
refer to the entire set of u /s.) The transition coeffi­
cients Ware 

W(u I u') = lim 7-IQ(U I u'; 7); u ~ u', (7) 
<-0 

= L Q({u,} I {un; r)P(lu;}; t). (1) and the condition (4) is replaced by 

In case the spins are independent, the matrix is 

* Supported by a U. S. Air Force Contract. 
t On leave of absence from Kyusyu University, Hukuoka, 

Japan. 
1 R. J. Glauber, Bull. Am. Phys. Soc. 5, 296 (1960). 

L' W(u I u') = O. (8) 

In the same way we can introduce the master 
equation for a single spin i: 

793 
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ap(rT,) _ 
at - 2: w( rT i I rTDP( rT:) 

The solution of this differential equation is 

ai' _ 2: WerT: I rTi)P(rT,). 
fT,' 

(rT(t) = rToo + «rT(O) - rTw)e-'/ T
, (15) 

(9) with 

The four elements in the matrix W have to fulfill 
condition (S) and also detailed balancing; hence, 
they are determined apart from a proportionality 
factor2 

-W++ = 11 exp (-fJ.H / kT) , 

-w __ = 11 exp (fJ.H/kT) , 

and ~ = r;; - 1, 

(lOa) 

(lOb) 

(11) 

where the rate constant 11 is determined by the 
interaction with the heat bath. 

We can calculate the matrix W(rT I u') for a system 
of N independent spins from (11), (10), (2), and (7): 

W(rT I rT') = IT~ r -{ 41 (r;;, - 1) + 1] ' (12) 

where the product sign refers to a direct product. 
Only the linear term in r survives in the limit. 

Hence, the only nondiagonal elements of the matrix 
that are nonzero are those where only one rT, say rT" 
is different in the final state rTi ~ rT;, while all other 
rT'S are the same, rTk = rT{ (k ~ i). This means that 
only one spin flips at a time, in accordance with the 
picture of independent spins. 

Another property of the special choice for W 
made in Eq. (2) or (12) is the reducibility of the 
master equation. If we introduce the reduced prob­
ability function 

L L .. , L L .. , L P(u) = PCU,) (13) 
(1'i-l t1i-+-1 

in Eq. (6), we can "project" the transition prob­
ability W into a 2 X 2 matrix if W is given by 
(12). We find the projected part of W to be w. 
This is not surprising since the direct product rule 
is the composition of single particles into a system 
of independent particles and the "projection" is 
the inverse process, starting from N-independent 
particles and decomposing it into a set of single­
particle equations. 

The description above is mainly given to establish 
a convenient starting point for a system of dependent 
particles. Before going into this we will write down 
the explicit formulas for a one-spin system. We 
introduce f3 = NH/kT 

2: UkP(Uk) = (Uk) = lI[iP(-) - e-pp(+)] a. 
= -P{2(Uk) cosh f3 - sinh ,B}. (14) 

• Note that w_!- corresponds to a transition from spin - Yz 
to ~pin +Yz. 

rToo = ttanhf3 and r-
I 

= 211 coshf3. (16) 

The appearance of the temperature in the non­
equilibrium equation is due to the requirement that 
the master equation must fulfill detailed balancing, 
and the result that for t ~ CXl the solution goes over 
into the equilibrium solution is implied. The relaxa­
tion time is always finite; this model does not 
contain any cooperative transitions which may give 
rise to infinite relaxation times. 

3. WEAK COUPLING 

In this case the field acting upon the ith spin 
will be 

Hi = H;O) + (rTi-1 + rTi+I)M, (17) 

where H~ is the external field, until now called H, 
and M the coupling constant. If we evaluate the 
expression for (Ui) in a way similar to the previous 
section, we find that it depends on (UirTi+l) and 
(rTirTi-I)' The time derivatives of these averages 
depends on the three-spin correlation function, and 
so on. Since we cannot solve such a hierarchy of 
equations we assume the coupling to be weak and 
make a cutoff after a finite set of equations. For 
instance, the time derivative of the two-spin cor­
relation contains terms in two-spin correlations and 
also, terms in three-spin correlations. The latter 
are the only ones that contain the coupling constant 
M. Hence, if we take M « H we can express the 
two-spin correlation function in a closed differential 
equation. 

Using this assumption in (lOa) and (lOb), we 
have 

(1 Sa) 

(ISb) 

where m stands for J.£M /kT. The result is that 
Eq. (14) is modified, using 

(Uk) = -P{2(rTk) cosh f3 - sinh f3} 

- IIm!2(rTkrTk+l) cosh f3 - (rTk+l) sinh f3 

+ 2(rTkUk_l) cosh f3 - (Uk-I) sinh f3}. (l9) 

On introducing the equilibrium average, this equa­
tion simplifies to 

(Uk) = -r-I{(rTk) - (rToo)} - r-Im{(ukrTk+l) 

+ (rTkrTk_l) - (rTk+1)(rToo) - (rTk-I)(Uoo)}, (19a) 
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where r is defined in (16). If we introduce the relative 
deviations from equilibrium 

X k = {(Uk) - u",j/u"" (20a) 

Yk = {(UkUk+l) - u~l/u~, (20b) 

we have 

rXk = -Xk - HYk - 1 + Y k - Xk+l - X k - 1), (21) 

with ~ = mu "'. This equation can be solved in con­
junction with a similar equation for Y. The latter 
is obtained under the condition that m «13. We find 

(UkUk+1) = -V{2(UkUk+1) cosh 13 + 2(UkUk+l) 

X cosh 13 - (Uk+!) sinh {3 - (Uk) sinh (3j , 

or by using (20a) and (20b) 

rl\ = -2Yk + X k + X k + 1 • 

(22) 

(23) 

Equations (21) and (23) form the starting point 
for the solution of the problem. In Sec. 4, we discuss 
the behavior in time of a particular initial condition. 

In order to clarify the assumptions made in the 
previous derivation we write the master equation 
for the one-spin distribution function in terms of 
the three-spin distribution function. The latter refers 
to the spin under consideration, and its two-nearest 
neighbors: 

X P(U£_lU~U£+l)' (24) 

We assume, first, that the transition probability 
depends on the value of the neighboring spin in a 
parametric way (i.e., the relation is diagonal), and 
second, that the dependence is linear. As a result of 
these assumptions, the three-spin distribution func­
tion can be reduced to a two-spin distribution 
function. 

X [1 + m(uk-l + Uk+l)]P(Uk-lU£Uk+l) 

= L W(UkU£)P(UO 
Uk' 

+ m L W(UkU£)Uk_1P(Uk_1UO 
Uk-llTk' 

+ m L W(UkUOUk+1P(U£Uk+l)' (25) 
Uk I Uk +1 

The time derivative of the two-spin distribution 
function is a function of the four-spin distribution 
function. We assume again: (1) that it depends 
parametrically on the neighbors, and (2) that it 

depends linearly on the neighboring spins. However, 
the terms in higher order in the coupling constant 
will be neglected. We find the following expression: 

L W(UkUOP(U~Uk+l) 
Uk' 

+ L W(Uk+lU£+l)P(UkU£+l) (26) 
Uk +1' 

and a similar expression for P(Uk' Uk-I)' The one­
spin distribution function is characterized by one 
quantity (Uk); and the two-spin distribution function 
P(UkUk+l) by 

4(UkUk+') = P(++) - P(+-) 

- P(-+) + P(++), 

2(Uk) = P(++) - P(-+) 

+ P(+-) - P(--), 

2(Uk+') = P(++) + P(-+) 

(27a) 

(27b) 

- P( + -) - P( - - ) , (27 c) 

1 = P(++) + P(-+) 

+ P( - +) + P( - - ) . (27d) 

Hence, Eqs. (25) and (26) can be rewritten in 
terms of these averages. The calculation gives again 
Eqs. (19) and (19a). 

Equations (21) and (23) form a set of coupled 
equations in X k and Yk • They can be solved con­
veniently with a Fourier transform since this 
automatically satisfies the boundary condition that 
spins 0 and spin N are equivalent. Hence, we intro­
duce 

which gives the following two equations for the 
amplitudes 

ral = -al - ~M1 + exp (-27ril/N)] 

+ 2~al cos (27rl/N), (29a) 

rb l = -2b l + al[1 + exp (27ril/N)]. (29b) 

The solution of the secular determinant in the 
approximation of small coupling constant (~ « 1) 
gives the following two eigenvalues: 

rA~+) = 2[1 - ~ - ~ cos (27rl/N)], (30a) 

rA~-) = 1 + ~. (30b) 
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The eigenvectors are 

al(+) = 2~ exp (-7ril/N) cos (7rl/N)C~, 

bl(+) = (1 - 2~)Ci+), 

ai-) -exp (-7ril/N)C;-) , 

(3Ia) 

(3Ib) 

(31 c) 

xo(O) = X; Yo(O) = Y-l(O) = tV. (33) 

The resulting Fourier amplitudes are, if we 
substitute (33) into (28), 

al = N-tX; bl = tN-!Y[I + exp (27ril/N)]. 

bi-) -2 cos (7rl/N)C;-) . 
By introducing the corresponding values for C" 

(3Id) with (31) and by introducing this in (32) one obtains 

The time dependent solution is 

al(t) = a;+) exp (- Ai+) t) + ai-) exp (- A (-) t), (32a) 

bl(t) = b;+) exp(-Ai+lt) + bi- l exp(-A;-lt), (32b) 

and the constants Ci"") are determined by the initial 
conditions. 

4. COMPARISON OF THE SPIN DEVIATION WITH A 
RANDOM WALK PROBLEM 

The probability distribution of the spin deviation 
as a function of position and time was obtained in 
the preceding section. We now find the solution 
that results from a delta function initial distribution 
in space. In doing so we can compare the result 
with the probability distribution function of the 
random walk. The functions have in common that 
the sharp peak for t = 0 will have a tendency to 
spread out for t > O. However, the random-walk 
function, which obeys the differential equation 
that is used in the heat conduction problem, has 
the property that the total probability is always 
constant. In the case of the spin deviation this will 
not be so. If a particular spin has a deviation from 
the equilibrium distribution it will disappear 
monotonically in time, and if a certain spin in 
a weakly coupled system has a deviation it will 
tend to "spread" to its neighbors and at the same 
time will tend to disappear. Hence, we expect that 
the area under the probability curve will decrease 
in time. Since the exact solution of this problem 
becomes rather cumbersome because of the inverse 
Fourier transformation, we will again assume the 
quantity ~ to be small. In this case the answer can 
be evaluated in terms of Bessel functions of imagi­
nary argument. We find, indeed, that the spin 
deviation at the "hot spot" will decrease mono­
tonically. The neighbors, which were assumed to be 
in equilibrium initially, display probability-deviation 
functions that will increase initially and decrease 
for large values of the time. 

Due to the cyclical boundary condition it is 
irrelevant which spin we select to be out of equilib­
rium. The initial condition is: All Xk and Yk are zero 
except the following three, 

alCt) = {I + 4~ + 2~ cos (27rl/N) I 

X [2~N-i(X - 2 Y) cos2 (7rl/N) 

X exp (-Att) - 12~N-!Y cos2 (7rl/N) 

- N-IX(l - 2~) I exp (- A-I t)], 

Mt) = {I + 4~ + 2~ cos (27rl/NI 

X [N-t cos (7rl/N) exp (7ril/N)(Y - 2X) 

X exp (-Att) - 2N-! cos (7rl/N) 

X exp (7ril/N) 12~ cos2 
(7rl/N) Y 

- (I - 2~)XI exp (-A~t). 

(34a) 

(34b) 

The contributions of the initial condition from X 
and Yare additive. 

The inverse transformation can be performed if 
we replace the sum over 1 by an integral over 'P, by 
taking the limit N ~ <Xl. The result is 

Xo(t) = {X + 2~(X - Y)l exp {-(1 + 2~)t/TI 
- 2~(X - Y)(Io + II) exp (-2(1 - ~)t/d, 

Xl(t) = HX - Y)[exp {-(I + 2~)t/TI 
- (10 + 211 + 12) exp (-2(I + ~)t/d], 

Yo(t) = (Y - X) {(I + 3~)Io 
+ (1 + 4~)Il + ~I2) exp 1-2(1 - ~t/d 

+ [X - 3HY - X)] exp {-(I + 2~)t/d, (35) 

y,(t) = (Y - X){~(Io + Ia) 

+ (1 + 3~)(Il + I 2)} exp 1-2(1 - ~)t/d 

- (Y - X)~ exp {-(I + 2~)t/TI, 
Yk(t) = (Y - X)[~(lk-l + Ik+2) 

+ (I + 3~)(h + Ik+1)] exp 1-2(1 - ~)t/r}, 

where the argument of the imaginary Bessel func­
tionS I .. (z) = i-nJ .. (iz) is Z = 2~t/T. Although these 
functions increase exponentially for large argument, 
their product with the exponentials will always 
decrease. 

3 E. Jahnke and F. Emde, Tables of Functions (Dover 
Publications, New York, 1945), p. 224. 
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The functions In have the following character­
istics. All functions 1'1(0) vanish except for n = 0 
and 10 (0) equals unity. Consequently, we see that 
all xn(O) are zero except Xo. The argument at which 

the function first exceeds a given value is larger 
for higher n, in other words, the farther away from 
the -origin, the later the maximum spin deviation 
will be observed. 
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The thermodynamic functions of a Fermi system of hard spheres at temperatures near absolute zero 
are calculated through the evaluation of the coefficient appearing before the second-order term a', in 
the fugacity series for the system where a is the hard sphere diameter. 

1. INTRODUCTION 

PROGRESS has been made in recent years in the 
calculation of the properties of the dilute hard­

sphere gas in the ground state. l The present paper 
extends these computations to the thermodynamic 
properties of a dilute hard-sphere Fermi system at 
temperatures near absolute zero, 

2. ASYMPTOTIC BEHAVIOR OF THE FUGACITY 
SERIES 

The fugacity series for a Fermi system of hard 
spheres with spin J to the order a2 has been given 
in reference 1: 

'" 
AS(p/kT) = AS I: btz l 

1 

-(2J + l)gs/2( -z) 

- 2J(2J + 1) [gS!2( -z)r(a/A) 

- 8J2(2J + 1)gl/2( -Z)[gs/2( -z)]2(a/A)2 

+ 8J(2J + l)F( -z)(al~,l + o (as /AS
) , (1) 

where 

'" 
gn(z) = I: z-nzn, (2) 

1~1 

1 See T. D. Lee and C. N. Yang, Phys. Rev. 117, 12 (1960) 
and the papers referred to therein. We follow the notations 
used there: mass of particle = Y::l, n = 1, a = hard-sphere 
diameter, N = number of particles, 0 = volume of box, 
p = N /0, J = spin of particles, P F = maximum Fermi 
momentum for free particles = [611"2 p/(2J + 1)]112 fJ = l/kT, 
X = (411"6)1/2, P. = fugacity. 

and 

'" 
F(z) I: (rstr 1l2(r + srl(r + trlzr+·+·. (3) 

r, 8. t"'1 

Since the fugacity z is equal to exp (p./kT) for 
p. > 0, as T ---t 0, Z ---t + ro. Using the asymptotic 
expansions of g1l2, g3/2, g5/2, and F for z ---t + ro , one 
is able to obtain the asymptotic limit of p to the 
order T2, the coefficients of which are series in 
powers of al.F2. The series as z ---t + ro of the g's 
are known, they are 

- gl/2( -z) = 27l" -l/2(ln Z/12 

- (12)-17l"3/2(ln Z)-3/2 + O([ln zr7/2), 

- g3!2( -z) = 4(97l")-l/2(ln Z)3/2 

+ 6-l7l"3/2(ln Z)-l/2 + O([ln zr5/2) , 

- g5/2( -z) = 8(157l"l/2) -l(ln Z)fiJ2 

+ 3-l7l"s/2(ln Z)1/2 + 0(1). 

(4) 

The series of F was computed to the lowest order 
in reference 1. We shall now extend the calculation 
to the next order. The result is 

- F( -z) = (16/105)(11 - 2 In 2)7l" -S/2(ln Zf/2 

- !7l"1/\4 In 2 - 2)(ln Z)3/2 + O([ln Z]5/4) (5) 

To obtain this we follow a procedure used in 
reference 1, as shown in the Appendix. 
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3. THERMODYNAMIC FUNCTIONS NEAR ZERO 
TEMPERATURE 

Using (1), (4), and (5), one can write down the 
pressure p as a function of fJ, and T: 

_ {2J + 1 5/2 2J(2J + 1) 3 + 4J(2J + 1) 
p - 151r2 fJ, - 911"3 afJ, 11"4 

X [2J _ 11 - 2 In 2Ja2//2 + ... } 
9 105 

+ IkT}2{2J + 1 1/2 _ J(2J + 1) 
24 fJ, 1811" afJ, 

+ J(2J + 1) [5J + 1 2 _ 1.J 2 3/2 + ... } 311"2 9 n 2 a fJ, 

+ .... (6) 

The other thermodynamic functions can be obtained 
from (6) by differentiation, using 

dp = p dfJ, + (Sin) dT. (7) 

Thus (8) and (11) show that to the first order in 
a, the density of levels is smaller for a dilute hard 
sphere Fermi gas than for a free Fermi gas at the 
same density, but the next order correction goes in 
the opposite direction. 
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APPENDIX. REPRESENTING F IN TERMS OF AN 
INTEGRAL 

8 1'" z - F( -z) = 11"3/2 0 Z + exp (X2 + u + v) 

X z z 
z + exp (y2 + u) z + exp (Z2 + v) 

X dX d Y dZ du dv. (AI) 

where S = entropy of the system. In particular one Let 
can obtain the entropy S in terms of the energy E G(u) = 1'" z 2 d Y 

O z + exp (Y + u) and the variables Nand n. The result is 

S = ( 24 )'/2 k1l"2 (~ P-5)1I2[I _ ~ {(P ) 
N 2J + 1 2 E F 3 11" Fa 

+ (22 J _ 97 + 26 In 2) J (P )2 
3 21 5 11"2 Fa 

24 ~E {11"2 5 
+ (2J + I)P; -8 + 8 l7rPFa 

+ (_ 455 J + 3079 _ 52 1 2)J(P )2} 
54 840 15 n Fa 

- 1 1'" ze-
a 

dex __ 
-"2 u I + ze- a (ex _ U)1/2 , (A2) 

with ex = U + y2. Then 

- F( -z) = -~2 JC du dvG(u)G(v)G(u + v). (A3) 
11" 0 

Observing that G(u) is small for u> In z and large z, 
we split G(u) into two parts 

G(u) = Go(u) + H(u - In z), (A4) 

+ ... J, (8) where (See Fig. I) 

where P F is defined in footnote I and 

~E = (E - E.round)/n, 

I 2J + 1 5{ 20J 
fiE.round = 1011"2 P F 1 + 911" aPF 

Go(u) 

= {! Lnz (ex !ex
U

)I/2 = (In z - U)1I2 U ~ In z (A5) 

o u> lnz 

and (See Fig. 2) 

(9) H(x) = H(u - In z) 

All thermodynamic functions can also be obtained 
from (8) using 

N ow the density of energy levels is related to the 
entropy by 

1 f'" d~ 1 
2 z 1 + eA (~ _ X)I/2 X 2:: 0 

l1-x 

d~ (1 I) 
2 0 1 + eA (~- X)'/2 - (-x - b,.)'/2 

f '" 1/2 d~ I 
+ -x (1 + eA) (~ - X)'/2 X < 0 (A6) 

density of energy levels = eS
/

k
• (11) The behavior of H(x) as x ~± co is 
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H(x) --> (A7) 

( If'" t:. dt:. ) 1 
-2" 0 1 + /" (_x)"72 

x--> -co. 

The function -F( -z) can now be written as a sum 
of eight integrals, each having as an integrand a 
product of three Go's or two Go's and one H, or two 
H's and one Go, or three H's. The integral containing 
three Go's is called 1000 which gives rise to the lowest 
order term and is given in reference 1. The sum of the 
integrals containing more than one H in their 
integrands is, except for a constant factor 8/1T3

/
2 

1110 + 1011 + 1101 + 1111 

= fC du dv[H(u - In z)H(v - In z)Go(u + v) 

+ H(u - In z)Go(v)H(u + v - In z) 

+ Go(u)H(v - In z)H(u + v - In z) 

+ H(u - In z)H(v - In z)H(u + v - In z)]. 

Since H is a function which is bounded and absolutely 
integrable from - co to + a> and Go is less than 
(In Z)1/2 the sum of the above four integrals is of an 
order not more than that of (In Z)1/2, i.e., 

Hex) 

FIG. 2. Schematic graph of H(x). 

the v' integration becomes elementary. After per­
forming this integration, we obtain, 

1001 = Ln, dX{H(-x{e
nz 2+ xy sin-

1 ~~: ~: 

+ In z - x ( I )1/2 
2 x n z 

+ H(X{1T/2e
nz 

2- xYJ} 

= Ln, ~ On z)2[H(x) + H( -x)] dx 

+ Ln, dxH( -x{ en z 2+ xy sin-1 ~~: ~: 
_ ?r: (1 )2 + On Z)3/2 _ / _ (In Z)I/2 

8 nz 2 vx 2 

+ {n' dXH(X{~ (-2x In z + x2
) J. 

1110 + 1011 + 1101 + 1111 = O([ln zr/2). (A8) We write the three integrals on the right as J 1, 

The sum of the remaining three integrals is J 2 , and J 3 • Now, for any n positive, 

A = 1001 + 1100 + 1010 
where 

I[ ln, 

1001 = 0 du dv(ln z - U)1!2 

X (lnz - V)1/2H(u + v - lnz). 

With the substitution u = u' + v' and v = u' - v', 

.,Ii'ii'Z:u u Sin Z 

G.lul • { o u > InZ 

o InZ 

FIG. 1. Schematic graph of Go(u). 

fa'" IH(x) 1 xn dx 

is convergent. Hence, 

IJ3 1 < In z fa'" IH(x) I ~ x dx 

+ ~ fa'" IH(x) 1 x2 dx = OOn z) (A9) 

J 1 = ~ On Z)2[fa'" - In][H(X) + H( -x)] dx. 

The J~ vanishes, as can be easily checked by 
substituting (A6) into the integrand and inter­
changing the order of integration. Furthermore, 
H(x) behaves like e- z for large x. Therefore for 
large z, 

J 1 = _?r: (In Z)2 f'" H( -x) dx + O([ln Z]2) 
8 l~ Z 

Using the asymptotic formula (A7) , one obtains 

J 1 = (1T3j96)(lnz)3/2 + O([lnz]1/2). 



                                                                                                                                    

800 CHEN-PING YANG 

To evaluate J 2 , we first put x y [In z] and obtain Thus, 

J 2 = (Inz)3 {dyH(-Y Inz{e ~ yr 

• -1 (1 - Y) 7r y
1/2 1 3/2J 

sm 1 + y - 8 + """2 - 2" y . (AlO) 

1001 = J1 + J2 + J3 
= (In Z)3(7r

2 /18) (1 - In z) + O([ln z ]5/
4
). 

Now, 

liDO + 1
010 

= 2 i,nz (In z - U)1I2 du 

(A12) 

X f nz

-

u 

dvOn z - u - v)1/2H(v - In z) 

Put ~ = (In Z)-7/
8 and evaluate n as J~ + J! For 

J~, the integrand is in absolute value less than ke 
where k is a numerical constant. This is because H is 
bounded and the square bracket varies linearly as y 
plus higher order terms. Thus 

ILl < (In Z)3 !ke2 = O([ln Z]5/4). 

l 'nz dXH(_X)[_(lnz - X)2 cosh-! (lnz + x) 
o 2 In z - x 

For J:, as z ~ + co we replace H( - yin z) by its 
asymptotic expression, since e In z = (In Z)I/B ~ + 
co. Therefore, 

J 2 = (In ztl2 { dy( _;~)y-3/{ e t yr 

. -1 (1 - y) 7r + 1 1/2 1 3/2J 
sm 1 + y - 8 zy - zy 

X [1 + O([y In zrl)] + o([ln Z]5/
4

) 

= (In Z)3/
2
(_ 7r

2)[i In 2 - i + ~J 
24 3 3 4 

+ o([ln Z]5/4). (All) 

+ !(In Z)3/2X 1/2 + !eln Z)1/2X3/2J. 

Making the transformation x = y In z, we can 
evaluate the resulting integral in the same manner 
as the evaluation of (AlO), and obtain 

liDO + 1010 = (In Z)3/2 { dY( _ ;~)y-3/2 

X [ -e ; yr cosh-1 (~ ~ ~) + !y!l2 + !y3/2 J 
+ o([1n Z)5/4) 

= (lnzf/2( -7r
2/18) (2 In 2 - !) + 0([lnz]5/4). (A13) 

Combining (A8), (A12), and (A13), we obtain (5). 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 4 JULY-AUGUST 1962 

Structure of a Bloch Wall 

M. W. MULLER AND S. DAWSO"* 

Varian Associates, 
Palo Alto, California 

(Received February 1. 1962) 

The standard form of a domain wall in a ferromagnetic medium is the result of a one-dimensional 
variational principle and is valid only for an unbounded medium. In a bounded ferromagnetic body 
two- or three-dimensional dipolar fields arise wherever a Bloch wall meets a surface of the body, and 
the form of the wall is distorted by these fields. If the fields and the corresponding distortions are 
small, they can be calculated approximately. We carry out the calculation for 1800 walls in a ferro­
magnetic film with uniaxial anisotropy, and with the easy axis of magnetization either parallel or 
perpendicular to the surfaces of the film. Numerical results are not obtained but formulas are presented 
ready for evaluation. 

1. INTRODUCTION 

AT temperatures well below the Curie tempera­
ture a macroscopically demagnetized ferro­

magnetic body consists of uniformly magnetized 

* Present address: Harvard University, Cambridge, 
Massachusetts. 

domains separated by narrow walls in which the 
magnetization turns rapidly but quasi-continuously! 
between the directions of the adjacent domains. 

The domain structure is especially simple in a 

I F. Bloch, Z. Physik 76, 513 (1932). 
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FIG. 1. Ideal domain structure in ferromagnetic films with 
uniaxial anisotropy, easy direction along x. Full arrows: 
direction of magnetization; dashed lines: dipolar field. 

M xHeff = 0 (1) 

The effective field Heff consists of contributions 
due to exchange, anisotropy, and dipolar forces (we 
neglect the effect of the magnetostrictive energy). 
Since we are assuming that the temperature is well 
below the Curie temperature, the magnitude of M 
is constant, and Eq. (1) describes the behavior of 
the direction cosines of M. The component equations 
for uniaxial anisotropy and for the geometry of 
Fig. 1 are4.5 

c('YV2a - aV2'Y) + 2Ka'Y - M('Y<I>z - a<l>z) = 0 
parallel-plane mono crystalline slab or film with c(aV2{3 - (3V2a) - 2Ka{3 - M({3<1>. - 'Y<I>.) = 0, 
uniaxial anisotropy, and with the faces cut either 
parallel or perpendicular to the easy axis of mag­
netization. Schematic pictures of the domain struc­
ture for these configurations are shown in Figs. l(a) 
and l(b). The structures are one dimensional, that 
is to say, uniform along z in Fig. l(a) and uniform 
along x in Fig. l(b). 

(2) 

The form of the magnetization in the domain 
walls was given by Landau and Lifshitz2 for an 
unbounded medium. This result is valid in the 
geometry we are considering at distances from the 
surfaces which are large compared with a wall thick­
ness. Near the surfaces the discontinuity of the 
normal component of the magnetization gives rise 
to a dipolar magnetic field which can distort the 
form of the wall. This dipolar field is shown dashed 
in Fig. 1. 

The distortion of the wall may be large and may 
even change the qualitative aspect of the domain 
structure. Thus, in the configuration of Fig. l(a), 
if the saturation magnetization 47rM is large com­
pared with the anisotropy field 2K)/M, the dipolar 
field gives rise to domains of closure. Similarly, in 
the configuration of Fig. 1 (b), if the thickness 2l 
of the film is small compared with the domain-wall 
thickness, the walls assume the configuration denoted 
as Neel waIls.3 In the present paper we do not 
consider such large deviations from the one-di­
mensional geometry. The calculation is confined to 
distortions of the walls under conditions when they 
remain small. 

II. THEORY 

A. Physics 

The equilibrium distribution of the magnetization 
satisfies the equation 

2 L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 
8, 153 (1935). 

a L. Neel, Compt. rend. 241, 533 (1955). 

where a, {3, 'Yare the direction cosines of M, K 
is the anisotropy constant, c is the exchange constant, 
and <I> is the magnetostatic potential. 

If we focus our attention on a single domain wall 
(the interaction between adjacent domain walls is 
very small) then in zeroth approximation <I> = {3 = 0, 
V2 = d2 / dy2 and 

(3) 

Letting aD = sin 00 , 'Yo = cos 00 and using the bound­
ary condition 00 = ±7r/2 for y ---t ± co we obtain 
the well-known one-dimensional solution2 

aD = tanh (y/o) , 'Yo = sech (y/o) , (4) 

where 0 = (c/2K)1/2 is the nomial wall thickness. 
In computing the next-higher approximation we 

will determine the magnetostatic potential <I> from 
the surface "charges." These are 

<T = ±47rM sin 00 

= ±47rMtanh (y/o) at x = ±l (5a) 

= ±47rM sech (y/o) at z = ±l. (5b) 

[Here and throughout this paper equations labeled 
(a) and (b) refer to the configurations of Figs. l(a) 
and l(b), respectively.] 

We now write 01 = 00 + 0 and linearize Eqs. (2) 
by dropping terms of second order in 0, {3, and <1>. 
After some manipulation this yields 

{V2 + (I/02)[2 sech2 (y/o) - 1]) 0 

= (M/c)[sech (y/o)<I>z - tanh (y/o)<I>z] 

{V2 + 0/02)[2 sech2 (y/o) - 1]){3 = (M/c)<I>y. (6) 

4 W. F. Brown, Jr., J. AppJ. Phys. 30, 625 (1959). 
5 M. W. Muller, Phys. Rev. 122, 1485, (1961). 
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Each of the two problems we are considering is two 
dimensional, that is to say, 

or 
az = 0 

ax = o. 
The boundary conditions are 

e={3=o as y-->±oo 

ex = {3x = 0 at x = ± l 

ez = {3z = 0 at z = ±l. 

(7a) 

(7b) 

(8a) 

(8b) 

The approximation we are using is valid only if the 
calculated corrections are small. In general, this wiII 
turn out to be true if (a) K/M2 » 1 or (b) 1/0» 1. 
In principle, the procedure could be iterated to 
compute second and higher approximations; in this 
paper we do not go beyond the first approximation. 

B. Mathematical Treatment 

We have to solve Laplace's equation in two di­
mensions for a plane-parallel region with the surface 
charges of Eqs. (5). The potential ¢ that is obtained 
then fixes the inhomogeneous terms of Eqs. (6). 
This procedure can be carried out explicitly by 
working with the Fourier-transformed equations, 
and performing the inversion back to coordinate 
space as a final step in the calculation. 

For convenience we introduce dimensionless co­
ordinates ~ = x/o, 7] = y /0, t = z/o, and the 
dimensionless film thickness 2A = 2l/ o. 

The transform of the potential <I> 

obeys the ordinary differential equation 

d2¢/df - i¢ = 0 

d2¢/dt2 
- /¢ = 0, 

with the two-point boundary condition6 

(d¢) - -411"M f_~ e- i 
.. tanh 7] d7] 

d~ f~=X - _ 

(lOa) 

(lOb) 

The solution is 

(12a) 

(12b) 

and 

(13a) 

(13b) { 

2 ·M f'" iq 1 csch (1I"K/2) . h t d 
1I"t e - sh ' sm c;K K 

<I> = -'" K co I\K 

2 M f'" iK" 1 sech (1I"K/2) . h)- d 
- 11" e - SIn ~K K 

_'" K cosh AK 

2 ·M 1'" iq cosh ~K d 
<I>~ = 1I"t e h ' ·nh ( /2) K 

_00 cos I\KSI 1I"K 
(14a) 

(14b) 

<1>" = - 11" _: e cosh A~ sinh (1l"K/2) K (15a) 

{

2M f'" i.. sinh ~K d 

') ·M f ;K" smh tK d (15b) 
-,.,1I"t e h' h( 12) K. _'" cos I\K cos 1I"K, 

These are the sources for Eqs. (6). 
It should be noted here that of these four fields, 

<1>" in Eq. (15a) diverges logarithmically as A --> 00, 

~ --> A. This trouble arises from the idealization we 
have introduced in considering a wall between 
infinite domains. It does mean that we must avoid 
passing to this limit for configuration (a). 

The Green's function for Eq. (6) satisfies 

['\72 + (2 sech2 
7] - l)]G 

{O(~ - ~" 7] - 7],) 

= oCt - t" 7] - 7],), 

with boundary conditions 

Gf(±A, 7]) = 0 

G(~, ±oo) = 0 

Gi(±A, 7]) = 0 

G(t, ±oo) = o. 
The variables are separated by 

(16a) 

(16b) 

(17a) 

(I7b) 

(lla) G(~, ~.; 7], 7],) = 'f {g';;(7], 7],) cos m:~ cos m~~, 

(llb) 

6 Tables of Integral Transforms, edited by A. Erdelyi 
(McGraw-Hill Book Company, Inc., New York, 1953), 
Vol I, pp. 88, 30. 

+ '( ). n1l"~ . n1l"~'} gm 7], 7], sm-Xsm-X (18a) 

[using the abbreviations n == ! (2m + 1)], which 
satisfies the first boundary condition. Substitution 
in Eq. (16) and integration over ~ and ~. yields 
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( 
d2 + 2 h 2) c 0('1/ - '1/.) 

d'l/2 sec '1/ - am gm = (1 + 0';;)>' ' (19) 

where a~ = 1 + (m7r/>.)2 and 0';; is the Kronecker 
delta; and a similar equation for g:'. 

The complete primitive of this ordinary dif­
ferential equation is7 

g::' = Amea .. ~( -am + tanh '1/) 

+ Bme-a..~(am + tanh '1/). (20) 

To satisfy the second boundary condition we must 
have 

B = 0, '1/ < '1/.; A = 0, '1/ > '1/ •• 

The other two constants are obtained from 

giving 

g~ = ° 

g~('1/,)- - g~('1/,)+ = ° 
gC~('I/,) _ _ gC~('I/,)+ = 1/(1 + o~)>. , 

(21) 

(22) where 

11('1/) = -[ h".( -'1/) f", e;'~'hm('I/,) sech '1/, d'l/, x (-am + tanh 'I/)(am + tanh '1/,) 

if '1/ < '1/, 

and the same expressions with '1/ and '1/. permuted 
if '1/ > '1/,. 

Since these expressions will occur frequently, we 
introduce the abbreviation 

so that 

__ ~_ {hm('I/)hm( - '1/,) '1/ < '1/. 
27r2 m2am hm(-'l/)hm('I/,) '1/>'1/,. 

g~ = (23) 

Thus the solution of the inhomogeneous problem is 

(0) MfA f'" fJ = -; -A d~. _'" d'l/.G(~, ~,; '1/, '1/,) 

X [sech '1/. acl>(~" 71,)/a71'j 

acl>(~., 'I/,)/a'l/. 

(0) MfA f'" (3 = -; -A dt. _'" d'l/,G(t, t.; 71, 71,) 

X [-tanh 71, acl>(t., 'I/,)/a'l/']. 

acl>(t., 'I/.)/a'l/. 

(24a) 

Because of the symmetry of the fields, the parts 
of the Green's function that make a nonvanishing 
contribution are the g~ for 0, the g:' for (3. 

7 J. M. Winter, Phys. Rev. 124,452, (1961). 

+ h".('1/) i'" e"~'hm( - '1/.) sech '1/, d'l/,] 

12 ('1/) = - [ hn{ - '1/) f", e;·~·hn('I/.) d'l/, 

13 ('1/) = - [ h".( - '1/) i~ e;'~'hm{'I/,) tanh '1/, d'l/, 

The integrations over '1/, are carried out in Ap­
pendix 1. The results are 

11('1/) = 2e;'~{ -am sech '1/ + iKe-~ ~ (_e-2~)j 

[ 
am + tanh '1/ + -am + tanh '1/ ]} 

X iK + a". - 1 - 2j - iK + am + 1 + 2j 

X [an + tanh 71 + -an + tanh 'I/]} 
iK + an - 2j -iK + an + 2j 

---
8 We use 01.,,2 = 1 + (ml/A)2 = 1 + (2m + 1)2w2/4A2, etc. 
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( ) ;.~{ h + (1 . )[am + tanh 71 13 71 = e -2a", tan 71 - tK • + 
tK a", 

[ 
a", + tanh 71 + -am + tanh 71]} (26) 

X iK + am - 2j -iK + am + 2j . 

The summations which appear in· Eqs. (26) are 
related to the hypergeometric function.9 

It is now a simple but tedious task to perform 
the Fourier inversion indicated in Eqs. (25). For 
this purpose we note that the integrands in these 
equations vanish exponentially in the upper half­
plane if \K\ -t <Xl and have no singularities on the 
real axis. Thus each integral over K is just the sum 
of the residues in the upper half-plane. The only 
special caution that need be observed is to note 
that the expression for {3 contains sets of second­
order poles at K = i (2m + 1)/2X. 

We will write down only one of the resulting 
expressions as an example. The integrand for 8, 
Eq. (25a), has poles in the upper half-plane at 

K = i2k k = 1, 2, ... <Xl 

l = 0,1, ... <Xl 

K = i(a", - 1 - 21) j = 0, 1, ... jmax, 

where jmax is the largest integer < Ham - 1). 
Evaluating all the residues we obtain 

2M2X m m7r~ 
8 = --- L: (am + b", + cm) cos~, (27) 

C7r ",-1 

where 

m k tan 2kX 
am = t; 16( -1) exp [-2k71] (m7r/X)2 _ 4k2 

X [a", sech 71 + 2ke-~ ~ (-1); exp [ -2j71] 

( 
am tanh 71 -am + tanh 71 )] 

X am - 1 - 2(j + k) + a", + 1 + 2(j + k) 

m 

bm = L: 2 exp [-(2l + 1)7r71/2X] csc [(2l + 1)7r2/4X] 
1=0 

9 Higher Transcendental Functirms, edited by A. Erd6lyi 
(McGraw-HilI Book Company, Inc., New York, 1953), 
Vol. I, pp. 27-30, especially Eq. (1.11.10). 

X t (-1); exp [-2j71] [ am + tanh 71 
;-0 _ 1 _ 2(· + 2l + 1 ) 

am J 2X 7r 

+ -am r~l '.- 1 )j] 
am + 1 + 2 J + ~ 7r 

imax j (am - 1 - 2j)2 
Cm = -27r ~ (-1) (m7r/X)2 _ (am _ 1 _ 2j)2 

X tan [(am - 1 - 2j)X] csc [(am - 1 - 2j)7r/2]. 

These expression and the corresponding formulas 
for the other three functions of Eqs. (25) are too 
lengthy for evaluation without the aid of a computer. 
Since we have no immediate requirement for 
numerical results we have not carried out any 
computer evaluation. Such an evaluation would be 
relatively simple. The analytical results have been 
recorded here for this purpose, and because the 
analytical procedure may be useful for other prob­
lems in this area. 

APPENDIX 1. 

EVALUATION OF THE INTEGRALS II, 110 I, FOR 
EQUATIONS (25) 

To evaluate 

I -"'m~( + t nh ) f~ (i<+"'m)~' 
1 = e am a 71 e 

-m 

X [-a", + tanh 71.] d710 

+ eam~( -a", + tanh 71) im 

e( .. -am}~' 

X [a", + tanh 71.] d1]. 

= e-am~(a", + tanh 1]) i~ e(i.-am}~' 

X [ -a", sech 71. - d~. sech 710] d1]o 

+ eam~( -am + tanh 1]) i m 

e(i.-am}~' 

X [am sech 1]. - d~. sech 1].] d1]. 

= -2amei8~ sech 1] 

+ i{e-am~(am + tanh 1]) 

X f_'", e(i8-a m}., sech 71. d71. 

+ eam~( -a", + tanh 1]) 

X i'" e(i.-a m}., sech 1]. d1]. J. 
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Use the substitutions 11. = -t + 11 in the first 
integral and 11. = t + 11 in the second integral. Then 
the expression in square brackets becomes1o 

f2[ (iK-I)~( + t nh ) 100 

exp [-(iK + am - l)t] dt 
e am a 7] 0 exp [2(t - 11)] + 1 

+ e(iK-I)"( -am + tanh 7]) 

X 100 

exp [(iK - am - l)t] J dt 
o exp [ -2(t + 11)] + 1 

similarly the integral needed for (3 

12 = e-an~(an + tanh 11) 

11 > 0, 

X L"oo e(iK+an)~'( -an + tanh 11.) dl1. 

+ e+an~(an + tanh 7]) 

X 100 

e(iK+an)~'(an + tanh 11.) dl1. 

10 D. Bierens de Haan, Nouvelles tables d'integrales definies 
(Stechert-Haffner, Inc., New York, 1939), p. 54. 

_ (an _ 1) -a~ + tanh 7] 
~K - an 

X L: e(;K+am)~'( -am + tanh 7].) tanh 11. dl1. 

+ eam~( -am + tanh 11) 

X 100 

e(iK-am)~'(am + tanh 7].) tanh 11. d7]. 

= ei'~{ -2am tanh 11 + (1 - iK) 

X [am .+ tanh 7] _ (-a,:, + tanh 7])J 
~K + am ~K - am 

[ 

00 (_e-2~); 

+ 2iK (am + tanh 11) L: . + 2 . 
;-0 ~K am - J 

00 (_e-2~); J} 
+ (-am + tanh 11) L:. + + 2' . 

;-0 tK am J 
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Asymptotic Theory of Hamiltonian and other Systems 
with all Solutions Nearly Periodic*t 
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Plasma Phy .• ic8 Laboratory, Princeton University, Princeton, New Jersey 
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Consider a system of N ordinary first-order differential 
equations in N dependent variables, and let the independent 
variable s not appear explicitly. Let the system depend on a 
small parameter E and possess a formal infinite power series 
expansion in E, and suppose that the limiting system for 
E = 0 exists and has only periodic solutions. Then a formal 
solution can be constructed involving infinite power series in 
E and satisfying the equations over large domains of s (of 
order 1/ E). The true solutions of the system exist over such 
domains and are asymptotically represented as E->O by the 
formal solutions. The ('onstruction is based on the standard 
type of formal series solution of a "reduced" system of N - 1 
equations in N - 1 dependent variables and with the new 
independent variable IT = E s; the omitted variable is essen­
tially an angle variable cf> describing the phase around the 
simple, closed curves. If the original system is Hamiltonian, 

A. INTRODUCTION 

1. Historical Perspective 

T HE phenomenon of adiabatic invariance (con­
stancy of an action integral under slow change 

of external parameters) has long been known in 
classical mechanics, receiving prominence because 
of its role in the so-called quantum conditions and 
of their importance during the transition from 
classical to quantum mechanics. Although the in­
variance was recognized to be only a pproxima te 
and was only demonstrated to the lowest significant 
order,l the question of whether the constancy might 
be valid to higher order seems not to have been 
considered at that time or in that connection. For 
this there were perhaps two reasons: the first that 
the question probably appeared to be of only aca­
demic interest, and the second that not all adiabatic 
invariants are constant beyond lowest order. 

The question apparently first became of signifi-

* This work was accomplished largely under the auspices 
of the U.S. Atomic Energy Commission. Some of it was 
accomplished while the author was a guest at the Max-Planck­
Institut fur Physik und Astrophysik (Munich) as a National 
Science Foundation Senior Postdoctoral Fellow, to both 
of which organizations he is very grateful. It is a pleasure to 
acknowledge the helpful discussions and suggestions of a 
number of scientists, especially E. Gerjuoy, J. Moser, and 
the author's colleagues at the Princeton Plasma Physics 
Laboratory, mainly 1. Bernstein, E. Frieman, R. Kulsrud, 
A. Lenard, C. Oberman, and L. Spitzer, Jr. 

t Presented at the International Atomic Energy Agency's 
Conference on Plasma Physics and Controlled Nuclear 
Fusion Research, September 4-9, 1961, Salzburg, Austria. 

1 M. Born and V. Fock, Z. Physik, 51, 165 (1928). 

then one can define the usual action integral J = f p' dq to all 
orders; the integral is taken around the phase ring. It is 
proved that J is an integral of the system and that the 
Poisson bracket of cf> with J is unity, both to all orders. The 
usefulness of this particular integral is that it is computable 
locally. The reduced system, after elimination of another 
dependent variable by means of the constancy of J, can 
itself be put in Hamiltonian form; if its solutions are nearly 
periodic, the whole procedure can be reapplied. The present 
theory encompasses previous proofs of adiabatic invariance 
to all orders for particular systems such as the harmonic 
oscillator, the nonlinear oscillator, the charged particle 
gyrating tightly in a given electromagnetic field, and the 
longitudinal back-and-forth motion of such a particle trapped 
between two "magnetic mirrors" in a weak electric field. 
There are many other applications. 

cance for applications in connection with the 
magnetic moment of gyration of a charged particle 
gyrating tightly in a strong magnetic field, which 
was shown to be an adiabatic invariant by Alfven. 2 

On the one hand, the theory of virtually every 
prospective device for the production of useful 
energy from controlled thermonuclear fusion3 has 
leaned very heavily on the constancy of this mag­
netic moment, and in those cases for which more 
or less steady operation was envisioned (stellarator, 
mirror machine, etc.) it was seen that the require­
ment that particles remain confined for periods of 
time encompassing many millions of gyrations 
could generally be met only if the magnetic moment 
were in fact constant to a much higher approxima­
tion. In connection with the stellarator several 
other related approximate results were proved to 
hold to all orders,4.5 which made it seem both fitting 
and somewhat more likely that the constancy of 
the magnetic moment would follow suit. On the 
other hand, astrophysical theories (e.g. the Fermi 
mechanism6 for cosmic-ray production) led to pre­
cisely the same question, in response to which 

2 H. AlfvEm, Cosmical Electrodynamics (Clarendon Press, 
Oxford, England, 1950). 

3 A. Bishop, Project Sherwood (Addison-Wesley, Reading, 
Massachussetts, 1958). 

4 L. Spitzer, Phys. Fluids, 1,253 (1958). 
5 M. Kruskal, U.S. Atomic Energy Commision Report 

NYO-998 (PM-S-5), 1952. 
M. Kruskal, U.S. Atomic Energy Commission Report 

NYO-996 (Appendix to PM-S-3), 1951. 
6 E. Fermi, Astrophys. J. 119, 1 (1954). 
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Hellwig7 proved the constancy of the magnetic 
moment to the next order beyond the lowest. 
Kulsrud8 considered the simpler problem of a har­
monic oscillator with slowly changing coefficient of 
elasticity and proved that its adiabatic invariant 
(ratio of energy to frequency) was constant to all 
orders, seemingly the first result of the kind. In 
quick succession after this breakthrough Kruskal9 

proved the analogous result for the gyrating particle 
and Lenard10 for the anharmonic oscillator. Berko­
witz and Gardnerll stiffened the results with un­
wonted (but wanted!) mathematical rigor by proving 
that the formal expansions employed to describe 
the motion of the gyrating particle really were 
correct asymptotic series for the true trajectory. 

Another adiabatic invariant whose degree of con­
stancy has become of practical importance recently 
is the so-called longitudinal adiabatic invariant of 
the gyrating particle. This obtains under more 
restrictive conditions than the magnetic moment 
invariant does, namely, if the tightly gyrating 
particle moves back and forth along a magnetic 
line of force and periodically returns nearly to its 
initial state. It seems to have been first employed 
(to lowest order) by Rosenbluth. 12 It became of 
interest again (and to higher order) in connection 
with the Van Allen belt. 13 Gardner14 has settled 
the matter by proving the invariance to all orders. 

2. Significance and Arrangement of Present Paper 

In the present paper, a unification and simplifica­
tion of all these preceding treatments of adiabatic 
in variance to higher order is achieved. The signifi­
cant common element has turned out to be that 
each was concerned with a Hamiltonian system 
whose solutions are all nearly periodic. Lest this 
appear too like a truism, it may be pointed out 
that there are other types of adiabatic invariant 
associated with Hamiltonian systems whose solu­
tions to lowest order are ergodic over surfaces of 
constant energy in phase space. (Incidentally, 
Lenard10 has shown that descriptions and results 
valid to all orders can be obtained even for a system 

7 G. Hellwig, Z. Naturforsch. lOa, 508 (1955). 
8 R. Kulsrud, Phys. Rev. 106, 205 (1957). 
9 M. Kruskal, Rendiconti del Terzo Congresso Inter­

nazionale sui Fenomeni D'Ionizzazione nei Gas tenuto a 
Venezia, Societa Italiana di Fisica, Milan (1957). 

10 A. Lenard, Ann. Phys. 6, 261 (1959). 
11 J. Berkowitz and C. Gardner, Comm. Pure Appl. Math., 

Vol. XII, 501-512 (1959). 
12 M. Rosenbluth, U.S. Atomic Energy Commision 

Rept. LA-2030 (1956). 
13 J. Van Allen, J. Geophys. Research 64, 1683 (1959). 
14 C. Gardner, Phys. Rev. 115,791 (1959). 

all of whose solutions are nearly only "multiply 
periodic" so long as it is linear.) 

These two characteristics, of being Hamiltonian 
and of having all solutions nearly periodic, may 
largely be treated independently of each other, 
although their amalgamation (coined "almost­
mechanics" by E. Gerjuoy) leads to interesting 
consequences (part E). Since the theory of Hamil­
tonian systems is already extremely well developed, 
everything we need is at hand, except, perhaps, for 
the result proved in Appendix 2. We therefore 
devote the major portion of the paper to discussing 
systems of differential equations with all solutions 
nearly periodic, which is of great independent 
interest in any case. We first derive the appropriate 
formal series solutions (Secs. B. 5-9). This treat­
ment is in essence very similar to the method of 
Kryloff and Bogoliuboff,'5 but seems to be a generali­
zation inasmuch as the latter method is confined 
to quasi-linear second-order systems. 

Following the determination of the formal series 
we prove (Secs. B. 10-11) that the given system has 
exact solutions for an appropriately large range of 
the independent variable and that the formal series 
solutions represent the exact solutions asymptoti­
cally. The method seems simpler and more natural 
than that given by Berkowitz and Gardnerll for 
the special case of the gyrating particle. An interest­
ing feature is the '!bootstrap" argument (Sec. B. 11) 
by which the two items are linked together and 
proved simultaneously. thereby avoiding a certain 
duplication to be found in their treatment. 

Part C starts with the theorem of phase inde­
pendence, the importance and utility of which for 
this paper can hardly be overestimated: it is fair to 
say that parts C, D, and E consist of almost nothing 
but its systematic exploitation. The full power of 
this ridiculously simple theorem can probably only 
be appreciated by those who, like the author, have 
spent tremendous amounts of effort and time in 
attempting (often unsuccessfully) to obtain various 
results to all orders. 

3. Notation and Conventions 

We consistently employ vector and dyadic nota­
tion in dealing with arrays of quantities and often 
indulge in the geometric terminology which ac­
companies it so naturally. Vectors are boldfaced 
throughout, and polyadics are represented by script 
letters. The number of components (array elements) 

15 N. Kryloff and N. Bogoliuboff, Introduction to Non­
Linear Mechanics, (Annals of Mathematics Studies, No. 11, 
Princeton University Press, Princeton, 1947). 
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of every vector (etc.) will of course be announced 
(if it is definite) when that vector is first introduced, 
but that number will not be indicated, thereafter, 
by any special notational feature. The unit dyadic 
in any number of dimensions will be denoted by fJ. 

The inner ("dot") product of two vectors is defined 
only if they have the same number of components, 
and the double inner product is to be understood in 
the sense that ab : cd = a·d b·c. 

Differentiation, whether ordinary or partial, will 
be consistently denoted by attaching as a subscript 
the variable with respect to which the derivative 
is taken. Moreover, the use of subscripts is reserved 
exclusively for this purpose. To maintain the correct 
vector ordering, it is convenient, in a few places, 
to put the subscript before the symbol to which 
it is attached; thus "f denotes the gradient of the 
vector field f and the transpose of the dyadic f". 

When one set of variables (coordinates) is trans­
formed into another, which will be symbolized by a 
double-headed arrow +-7, the new variables will be 
denoted by symbols entirely distinct from the old 
ones. Therefore (in contrast, for instance, with the 
conventional notation in thermodynamics), there 
can arise no possible ambiguity as to what is being 
held fixed during a partial differentiation. 

We will have mostly to do with formal infinite 
series in increasing integral powers of an expansion 
parameter E, and we generally omit any indication 
of E in the notation. If f denotes such a series, f(n) 

denotes the coefficient of En, and f[n] denotes the 
sum of all the terms of f up to and including Enf(n). 
As usual, O(En) denotes any quantity which, as 
E -? 0, approaches zero at least as fast as En. 

A variable will be called angle-like if it is deter­
mined up to and only up to an additive integer, so 
that it is like an angle variable measured in units 
of a complete revolution. (As here, defined terms 
will regularly be italicized when they are introduced.) 

4. Local Dependence and Useful Integrals 

For a full exposition of the significance of the 
results to come, it is necessary to discuss here the 
concept of local dependence. A function 7](x) on a 
space of points x which is a functional of (i.e. depends 
on) another such function Hx) depends locally on 
Hx) if the value of 7] at any given point x is inde­
pendent of the values of ~ outside of arbitrarily small 
neighborhoods of that point. (Here ~ and 7] can 
stand indifferently also for sets of independently 
many functions.) In practice this usually means 
that the value of 7] at x is a function of x and of 
the values at x of ~ and its derivatives (and often 

in fact only a finite number of them). We shall use 
this definition only "metamathematically" and so 
may modify it or use it loosely on occasion. 

To see why local dependence is significant, let us 
observe that one of the later results is the derivation 
of an approximate integral or "constant of motion" 
J (Sec. E. 2) for certain systems of differential 
equations. How can this be important, in view of 
the fact that such systems commonly have not 
merely one but a complete set of exact integrals? 
The answer is that J is a "useful" integral. There 
are two ways in which an integral of a system may 
fail to be useful. The first is that it may fail to be 
a so-called isolating integral (see Wintner'6

), the 
second that it may not be locally computable. 

To illustrate the first possibility (without really 
going into the subject or even giving the definition 
of isolating integral) by means of a really trivial 
example, let us take the system which consists of 
two independent subsystems 

a. = a, {3. = b, (AI) 

where a and {3 are angle-like variables, s is the inde­
pendent variable, and a and b are given constants. 
The subsystems have each one integral, namely, 

a - as, {3 - bs, (A2) 

respectively. If we now ask for integrals which are 
independent of s, we see that the subsystems have 
none, but the combined system has the s-indepen­
dent integral 

ba - a{3. (A3) 

This integral, however, is multivalued. If a and b 
are commensurable (alb rational) it is an isolating 
integral and is useful: Knowing the value of the 
integral (from initial conditions, for example) and, 
say, of {3, we can say something about the value of 
a; in fact, writing alb in standard form as min 
(m and n relatively prime integers and n positive), 
we can tell that a must have one of n (essentially 
distinct) values all of whose pairwise differences are 
multiples of lin. On the other hand, if a and b 
are incommensurable, the integral is not isolating, 
and is clearly not useful in the same way. 

The second possibility is of more direct concern. 
For illustration consider the motion of a particle 
in a given static three-dimensional potential field. 
To guarantee the existence of a complete set of 
isolating integrals let us agree to accept time-de­
pendent integrals. (In various special cases this 

,. A. Wintner, Analytical Foundations of Celestial Me­
chanics (Princeton University Press, Princeton, 1941) 
Sec. 128. 
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can be guaranteed even for time-independent inte­
grals, for instance, if the potential has a translational 
invariance, so that the corresponding spatial co­
ordinate can be ignored, grows linearly in time, and 
can serve in effect as the time.) In such a case, it is 
sometimes said that the energy is the only integral. 
Strictly speaking this is nonsense, since we know 
that there is a complete set of integrals (for instance, 
the values of the dynamical variables taken on at 
t = 0, viewed as functions of the free dynamical 
variables). But there is no question about the 
exceptional status of the energy integral: In count­
less physical arguments it plays a unique role denied 
to the other integrals. The reason for this is that 
the energy depends only locally on the potential 
and there is no other integral (functionally inde­
pendent of the energy) with that property. The 
point is that, although in every particular case 
(i.e., for every particular potential function) the 
other integrals exist, and can be perfectly well de­
fined mathematically, the problem of finding them 
is equivalent to the problem of integrating the equa­
tions of motion of the particle. Only the energy 
integral is useful because it alone is known a priori, 
without integrating the system completely, and 
because it alone remains unaffected (in its func­
tional form) in one region by a change in the potential 
elsewhere along the orbit of the particle. 

5. Autonomous Systems 

Throughout this paper we shall be dealing with 
systems of ordinary differential equations. Primarily 
for notational convenience we do not permit the 
functions expressing the derivatives to depend on 
the independent variable, but this is no essential 
restriction, for there is no objection to such a de­
pendence de facto (so long as appearances are pre­
served de nomine) by way of the existence of a 
dependent variable which always equals the indepen­
dent variable, i.e., has derivative unity. Denoting 
the dependent variables collectively by x and the 
independent variable by s, we may write a general 
system in the form 

x. = f(x). (A4) 

This may be interpreted as a first-order differential 
equation in the space of points x. We call it an 
autonomous system for short and as a faint re­
minder that the rate of change of x depends only 
on x itself. When f(x) is a formal series in powers 
of f, we shall say that (A4) is in standard form if f 
starts with a term of zeroth order which nowhere 

(as a function of x) vanishes (in all components 
simultaneously) . 

We assume that f is as smooth as needed, so all 
the standard theory of systems of ordinary dif­
ferential equations applies. A most fundamental 
teaching of that theory is that for every specified 
"initial condition," i.e., specification of x at (say) 
s = 0, there exists a solution xes) of (A4) which may 
be continued indefinitely so long as x stays within 
the domain of definition of f. Another fundamental 
teaching is that such a solution is unique: Any two 
functions satisfying the same autonomous system 
and equal for s = ° are equal for all values of s (in 
any interval which contains zero and over which both 
functions are defined); this is in fact a special case 
of the fundamental approximation theorem for 
ordinary differential equations (Appendix 1). 

Let X(x, s) denote the unique solution of (A4) 
which passes through x at s = 0, i.e., let X be defined 
by the conditions 

X,(x, s) = f(X(x, s)), 

X(x,O) = x. 

(A5) 

(A6) 

An important property of the solutions of auto­
nomous systems is that the one-parameter family 
of mappings of the form x --> X(x, s) (between 
parts of x space) constitute a group, and furthermore 
that the group operation on X(x, s') and X(x, s) 
is X(x, s' + s), so that the group is isomorphic 
to the additive group of real numbers s. [Indeed, 
(A6) already states that s = ° represents the 
identity.] To show this one must establish that 

X(X(x, s'), s) = X(x, s + s'). (A7) 

This follows from the uniqueness theorem, since 
the two sides are equal for s = ° by (A6), and 
satisfy the same. autonomous system because the 
left-hand side is obtained from X(x, s) merely by 
substituting X(x, s') for x and the right-hand side 
by substituting s + s' for s, neither of which substi­
tutions invalidates (A5). 

A further property we use in the next section is 
now easily obtained. Using (A5) with s = ° and 
(A6) we have 

X,(x, 0) = f(x). (A8) 

Differentiating (A7) with respect to s', setting 
s' = 0, and using (A6) and (AS) gives 

Xx(x, s) ·f(x) = X,(X, 8). (A9) 

6. Recurrent Systems 

If all solutions of (A4) are periodic (not neces­
sarily with equal periods) we call (A4) a recurrent 
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system. We also call the vector field f in x space 
recurrent under the same circumstances, namely, 
when its integral curves (curves which at each of 
their points are tangent to the field) are closed, 
forming topological circles; we call them loops. For 
each x there is then a least positive value of s for 
which the initial value x recurs; we denote this 
period by Sex) and have 

X(x, Sex»~ = x, (A 10) 

X(x, s) .,t. x for 0 < s < S(x). (All) 

We next show by a formal argument the obvious 
fact that the period Sex) is constant along a solution 
of (A4). We first take the s derivative of (AlO) 
as x varies in accordance with (A4) , or in other 
words, we take the x derivative, on the right, say, 
and then dot on the right with f(x); using (A9) 
with s = Sex) the result may be written 

X/x, Sex»~ + X,(x, S(x»SxCx) ·f(x) = f(x). (A12) 

But setting s = Sex) in (A5) we have 

X,(x, Sex»~ = f(x) (A13) 

in view of (AlO). Therefore, the extreme terms in 
(A12) cancel, and, furthermore, since f .,t. 0, we have 

(A14) 

which is the desired result; to be entirely explicit, 

[S(X(x, s»], = Sx(X(x, s»·X,(x, s) 

= Sx(X(x, s» ·f(X(x, s» = 0 (A15) 

in view of (A5) and of (A14) with X(x, s) for x, so 
that the period evaluated at all points of the solution 
X(x, s) is the same (independent of s). This result 
may be written 

S(X(x, s)} = S(x). (A16) 

Another hardly surprising result, a generalization 
of (AlO), is 

X(x, s + Sex»~ = X(x, s). (A17) 

This can be deduced from the uniqueness theorem, 
or by taking (A7) with s' = Sex) and using (AlO). 
It is now obvious that X(x, s) has the same value for 
two different values of s if and only if they differ by 
an integral multiple of Sex); the "if" follows by in­
duction from (A17), and the "only if" part since 
otherwise a contradiction to (All) could be similarly 
obtaincd. 

7. Splittable Systems 

An important property of some systems of dif­
ferential equations is the possession of an auto-

nomous subsystem. Suppose that, of the set of N 
dependent variables denoted collectively by x, there 
are some M (where 1 ::; M ::; N - 1) whose s 
derivatives as given by (A4) are independent of 
the remaining N - M variables. The M variables 
then satisfy an autonomous subsystem of their own 
and we call the original system split. More generally, 
we call a system splittable if by a local change of 
dependent variables it can be transformed into a 
split system, i.e., if there are local definitions of M 
new variables, functions of x whose derivatives, 
computed using (A4) , are expressible as functions 
of the M new variables themselves alone. These 
variables then satisfy a new autonomous system of 
fewer variables. 

By a local change of variables we mean, a change 
whose defining formulas depend locally on f(x) (see 
Sec. 4). The requirement of localness is essential 
to the definition; without it, for instance, every 
system with a complete set of isolating integrals 
would be not merely splitt able but completely 
splittable into N independent autonomous sub­
systems of one dependent variable each. 

The problem of solving a system of order N may, 
if the system is splittable, be split up into the prob­
lems of first solving a system of order M and then 
one of order N - M. 

B. NEARLY RECURRENT SYSTEMS 

1. Formulation and Description 

Consider the system of first-order ordinary dif­
ferential equations 

x. = F(x, e), (BI) 

where x and F are vectors of N components. We 
suppose that F is defined in a suitable domain of 
its arguments, with properties to be described 
shortly, and that it and all its derivatives of all 
orders exist and are continuous. Let the domain 
be the product of a domain in x space with a closed 
interval of values for e among which occurs zero. 
Let (Bl) be a recurrent system for e = 0, so that 
F(x, 0) is a nowhere vanishing vector field with all 
integral curves closed. [When we speak of loops in 
connection with (Bl), we shall always mean these, 
even if it should happen, most atypically, that (BI) 
is also recurrent for e .,t. 0.] We require finally that 
the domain of points in x space for which F(x, e) 
is defined be closed, bounded, and N dimensional 
and be made up of loops. 

As e approaches zero any solution of (Bl) gets 
closer and closer to a loop, so long as the range of 
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values of 8 considered remains bounded (indepen­
dently of E). We may say that the solutions of 
system (Bl) are all nearly periodic17 for small E. 

The distance in x space (in any reasonable sense) 
by which a solution misses its initial point after one 
gyration, namely, after approximately following one 
closed loop around, is of order E; in general, it is 
to be expected that these small deviations will 
accumulate, so that after a large number of gyrations 
(a large change in 8) of order 1/ E, the solution will 
have drifted a finite amount and will be gyrating in 
a different region of x space from where it started. 
The curve in x space traversed by a solution in its 
entirety may be suggestively thought of as the 
distorted image of a helix of small pitch, as shown 
in Fig. 1. 

2. Inadequacy of Obvious Series Solution 

Our first task is to find some kind of formal solu­
tion of (Bl), in terms of infinite power series in E, 

which is asymptotically valid uniformly over large 
ranges of 8 and shows explicitly its nearly periodic 
nature. The obvious approach at first sight seems 
to be to represent x directly by a series, 

x ~ U(O\8) + E U(1)(8) + E2 U(2) (8) + "', (B2) 

and to determine the u (n) by substituting this 
series into (B1), expanding the function on the 
right-hand side in a formal double Taylor series 
around its zeroth-order arguments (u (0), 0), and 
collecting and separately equating like powers of E. 

This leads to the equations 

u;O) = F(u (0) , 0), 

u;') = Fx(u (0) ,O).u (1) + F ,(u (0) , 0), (B3) 

which do indeed determine the u (n) if some initial 
values are given, say at 8 = O. [And, in fact, if F 
is analytic then the series in (B2) converges to an 
analytic solution of (B1) for sufficiently small E.] 
Of course, u (0) runs periodically around and around 
a loop. But (B2) obviously can represent a solution 
asymptotically only so long as the solution stays 
within O( E) of U (0), which in general means only for 
bounded values of 8: For larger 8 the solution will 
have drifted farther from its initial loop. Therefore 
(B2) is not useful for our purpose. 

3. Standardization 

Before proceeding any further let us replace (Bl) 

17 This concept is not to be confounded with that of almost 
periodic functions, H. Bohr, Fastperiodische Funktionen, 
Ergebnisse der Mathematik und Ihrer Grenzgebiete (Julius 
Springer, Berlin, 1932), B.1, N.5, which we are not concerned 
with here. 

FIG. 1. Curve traversed by a solution of (B1). The curve 
cannot cross itself; the apparent crossings are due to 
projection. 

by 

x, = f(x), (B4) 

where f(x) denotes the Taylor expansion 

(B5) 

of F around E = 0, and is therefore an infinitely 
differentiable formal infinite series of non-negative 
powers of E. We have two reasons for doing this: 
First, since we are seeking a formal solution (which 
later is proved to represent the true solution as­
ymptotically, but which does not in general converge 
to it, nor indeed at all; see the next section) we 
must switch over to formal series at some point 
anyway, and it is simplest to do so at the start. 
Second, the theory about to be developed can be 
applied not only to true systems of differential 
equations, but also to merely formal systems (and 
in particular to the "reduced" system resulting 
from the first application of the theory; see Sees. 
C.3 and E.6). 

However, a warning is in order. Certainly (B4) 
is the formal analog of (B1); and indeed, the formal 
solutions of (B4) which we shall obtain, when taken 
up to terms of order n, do provide approximations 
up to that order of the true solutions of (B1) [as 
do also the true solutions of the system x, = fIn) (x)], 
as we see from the basic approximation lemma of 
Appendix 1. But this is only for ranges of 8 bounded 
independently of E; due to the exponential in the 
estimate (F9), no matter how large we take n, we 
could not expect these formal approximations to 
remain at all close to the true solutions fQr ranges 
of 8 of order 1/ E (or of order 1/ Ea

, a > 0; but we 
could, for instance, for ranges of order log E). Or 
rather, we could not expect so except for the near 
periodicity assumed; one of our conclusions (Sec. 
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B.1O) is that the approximations are in fact good 
for ranges of order II E. (But not quite so good: 
two orders in E get lost in the shuffle.) 

4. An Example 

An extremely simple but doubly illuminating 
example is provided by the harmonic oscillator with 
slowly varying rest point. As our basic equation we 
take 

E
2
U" + u = r(t) , (B6) 

where u is the displacement of the oscillator and 
ret) the rest point, a given function of its argument 
(and allowably a series in powers of E). If r were 
constant, every solution of (B6) would oscillate 
sinusoidally around r with period 2n; as it is, r is 
nearly constant during a period, so it should be 
possible to put (B6) into the form this paper deals 
with. 

To render the period finite we introduce s == tiE, 
so (B6) becomes 

u .. + u = r(ES), (B7) 

a version of the equation we might have started 
with; here the right-hand side varies slowly because 
of the factor E in the argument. To render (B7) as 
a formally fir~t-order system we introduce v == u,. 
To eliminate the dependence (of r) on the inde­
pendent variable S we bring back t, but now as a 
new dependent variable. (It wouldn't do to introduce 
a new dependent variable equal to S itself, because S 

does not recur, even to lowest order.) Altogether, 
we end up with a system in standard form (B4) 
with 

x == (u, v, t), 
(B8) 

f == (v, ret) - u, E). 

This system is nearly recurrent because to zeroth 
order, t remains constant and u and v oscillate 
periodically. 

Having used this example to illustrate how a 
given system may be transformed as required by 
the theory, we no:w use it to illustrate why the formal 
series we are led to are, in general, only asymptotic, 
and not convergent as one might have hoped (when 
f is convergent, i.e., analytic). For this we need 
only the original form (B6). Since the corresponding 
homogeneous equation has the general solution 

u = a cos (tj E) + {3 sin (tj E) , (B9) 

we may confine ourselves to a partiCUlar solution 
of (B6). One particular solution, for that matter, 

may be singled out as "oscillation free" (a concept 
which may be rendered precise by interpreting it 
to mean the vanishing of J; see Sec. E.2). This is 
a unique characterization to all orders, though ill 
defined for finite E. The oscillations referred to are 
naturally those of small period 27rE, and are ex­
cluded by requiring that t differentiation not affect 
(not lower) the order in €, in obvious contrast to 
its effect on the general solution (B9). Thus E

2
U tt 

is regarded as small, and (B6) is recursively solvable 
to yield 

2 
U = r - E Uti (BlO) 

This formal development differs from the Taylor 
series for ret + E) in two respects unimportant for 
present purposes (the absence of odd powers of € 

and the alternation of sign among the even powers) 
and in one important respect, the absence of n! 
in the denominator of the En term. It is thus clear 
that even the analyticity of ret) is insufficient to 
assure the convergence of (BIO). For (BlO) to have 
a radius of convergence greater than zero, the 
development of ret + E) must have an infinite radius 
of convergence, i.e., ret) must be an entire function. 
And even this is not quite enough, as can be seen 
by Fourier analysis of (B6). 

5. More Appropriate Variables 

Let us start our search for an asymptotic solution 
of (B4) by introducing a new coordinate system 
more appropriate than x for describing a nearly 
periodic but slowly drifting trajectory. To this end 
observe that the loops form an (N - I)-dimensional 
family, so that there exist N - 1 independent func­
tions of x each of which is constant on every loop; 
these can obviously also be chosen infinitely dif­
ferentiable, since f(O) is. [For instance, we may pick 
an infinitely differentiable (N - I)-dimensional 
hypersurface in x space which is nowhere tangent to 
f(O), then pick any set of N - 1 independent infinitely 
diff~rentiable coordinates Y on the hypersurface, 
and then extend Y to the rest of x space so as to be 
constant on every loop.] Denote some arbitrary fixed 
set of such functions collectively by a vector function 
Y(x) with N - 1 components. Thus each loop is 
characterized uniquely by the constant (vector) 
value assumed on it by Y(x). 

Next, let T(x) be any infinitely differentiable 
angle-like function which varies monotonically 
around each loop; for definiteness say it increases 
with s. We then change variables from x to y and u 
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by the transformation 

y = Y(x) , u = rex). (Bll) 

Of course, v is determined only up to an arbitrary 
additive integer. The transformation clearly pos­
sesses an infinitely differentiable inverse which we 
denote by 

x=X(y,v), (BI2) 

where X is, of course, periodic III v (with period 
unity). 

In terms of our new variables the system (B4) 
takes the form 

y. = e g(y, v), v. = I/;(y, v), (BI3) 

where (omitting the arguments y, v consistently) 

eg == Yx(X) ·f(X) , 

I/; == rx(X) ·f(X); 

(BI4) 

(BI5) 

here g and I/; are infinitely differentiable formal 
series, their leading terms are 0(1) and that of I/; 
is definitely positive, and g is written accompanied 
by the factor e because, by construction, y. must 
vanish to zeroth order. These equations exhibit 
the gyration clearly: to zeroth order, as s increases 
x stays on a loop (since y is constant) and runs 
periodically around it (since v increases mono­
tonically); to first order the loop may drift (since y 
may vary). 

We can hardly rest content with our system in 
the form (BI3), however. For, the gyration it 
depicts may be very uneven, full of sudden ac­
celerations and decelerations, since I/; may fluctuate 
wildly; further, and, in fact, more serious, the net 
rate of drift is not at all in evidence, since in the 
course of one gyration g may point in all different 
directions, even quite opposite to the direction that 
y is effectively drifting in, which can only be ob­
tained by some sort of integration around a loop. 
Using a previous metaphor, we might say that we 
have introduced coordinates y, v in terms of which 
every trajectory does indeed look like a helix of 
small pitch (if we think of v as the angle of a point 
on a circle), but only to zeroth order, and even there 
s does not increase uniformly around the loops. 

But these defects can be remedied. As for one 
minor issue, it is not hard to see that if l' had been 
chosen judiciously. 1/;(0) would have come out in­
dependent of v. It would only have been necessary 
to take 

T(x) = [{ :(~) ] / S(x') , (BI6) 

where x' is some definite point on the loop through 
x (say the intersection with the hypersurface sug­
gested before), S is the period (Sec. A6), and the 
line integral is taken along the loop (so that the 
ratio of vectors under the integral sign is well 
defined and scalar and, to be sure, nothing but ds). 
In carrying out our procedure in particular problems, 
it is in fact very desirable to start with such an 1'. 
We have not specified this to-be-so-called judicious 
choice, however, since for our abstract purposes it 
would make little difference, and that of dubious 
advantage; but we shall occasionally note where it 
would affect matters. 

6. Nice Variables 

The defects we have noticed in (BI3) are all due 
to the dependence of g and I/; on v. We therefore 
ask whether we can find an infinitely differentiable 
formal transformation to new variables which are 
similar to y and v and satisfy equations similar to 
(BI3), but without the odious dependence on the 
angle-like variable-and not only to lowest order 
but to all orders. We shall see that the answer is yes. 

Denote the new sought variables by a vector z 
of N - 1 components and an angle-like variable 1>, 
related to the old variables by 

z = Z(y, v), 1> = «P(y,v), (BI7) 

where Z and «P are to be determined. Let the system 
(BI3), and indirectly therefore (B4), transform into 

z. = e h(z) , 1>. = w(z) , (BI8) 

analogous to (BI3) but without 1> appearing as an 
argument on the right-hand sides; hand ware also 
to be determined. Naturally hand w, like g and 1/;, 
will be infinite power series in E, and it is only natural 
that Z and «P be so too. Thus, the transformation 
(BI7), unlike (Bll) , depends on the expansion 
parameter e. But this is of no concern, especially 
since Z and «P, and for that matter hand w, are 
to be 0(1). 

We must impose on Z and «P periodicity conditions 
which express that v is an angle-like variable and 
that 1> is to be a similar one, namely, 

Z(y,v + 1) 

«P(y, v + 1) 

Z(y, v), 

«P(y, v) + 1. 
(BIg) 

It turns out that we may specify the dependence of 
Z and «P on y for v = 0 with great freedom; for 
definiteness and simplicity we choose the initial 
conditions 

Z(y,O) = y, «P(y,O) = O. (B20) 
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These express that z and q, are to equal y and v 

at one definite point on each loop, where v = o. 
With conditions (BI8), (BI9), and (B20) we now 

claim not only the existence but also the uniqueness 
of the formal transformation we are seeking. 

7. Determination of Recursion Relations 

The first step in determining Z, <P, h, and w is 
to substitute (BI7) in (BI8), use the chain rule of 
differentiation, and eliminate y. and v. by (BI3), 
which yields 

1 1 l' [ w(y) fa dv -;;; = 1 + ~ 0" dv <py.g 

- {w(y + ~~) - wCY)} ] ~ ; (B28) 

the expressions enclosed in curly brackets are to 
be thought of as expanded in the obvious way, 
and are clearly 0(1). The factor n dvN can be 
developed as a series with a leading term which 
is 0(1) and definitely positive, due to the nature 
of 1/1. Thus (B27) and (B28) provide recursion 
formulas for hey) and w(y). 

(B22) 8. Recursive Construction of Desired Functions 

Let us assume temporarily that we know hand w 

as functions of their arguments. These equations 
may then be construed, thanks to the factor E 

appearing in the first term of each of them, as de­
termining, order by order, the derivatives of Z and 
<p with respect to v in terms of known quantities, 
while y plays the role of a parameter. Accordingly, 
we transfer the first terms to the right-hand side, 
divide by 1/1, and integrate; in view of the initial 
conditions (B20) the results may be written 

1" 1 
Z = Y + ~ 0 dv [h(Z) - Zy·gJ -;;; , (B23) 

I" 1 
<p = 0 dv [w(Z) - ~ <py.gJ -;;;. (B24) 

On these we next wish to impose the periodicity 
conditions (BI9), which it suffices to use only for 
v = 0 [for, assuming that (BI9) are satisfied in the 
previous orders, the integrands of (B23) and (B24) 
are periodic functions of v]. We obtain 

1
1 1 

o dv [h(Z) - Zy·gJ -;;; = 0, (B25) 

1
1 1 

o dv [w(Z) - ~ <py.gJ -;;; = 1. (B26) 

These are the conditions we employ to determine 
the functions hand w, which we previously assumed 
known. 

To this end, denote the integral in (B23) by K, 
substitute y + ~ K for the argument of h in (B25) 
and of w in (B26), and expand hand w in Taylor 
series around the argument y. The factors hey) and 
w(y) in the leading terms of these expansions, being 
independent of v, come out of the integrals, and we 
obtain 

hey) { dv ~ = { dv [Zy.g 

- ~ {hey + ~~) - hCY)}] ~ , (B27) 

Weare now prepared to prove the existence and 
uniqueness of formal series Z(y, v), <p(y, v), hey), 
and w(y) satisfying (BI7), (BI8), (BI9), and (B20). 
(Since it is hand w as functions that are sought, 
it is of no account that we now denote their argu­
ments by y instead of z.) We proceed by induction. 
It suffices to prove, for each non-negative integer 
n, that if the series exist and are unique up to terms 
of order n - 1, then they do and are so up to terms 
of order n. (For they certainly exist and are unique 
up to order minus one, since they are required to 
start with terms of order zero!) 

The argument is easy; we need merely appeal to 
the determining Eqs. (B23), (B24), (B27), (B28) we 
have derived, making sure to find Z before <p or h, 
and w before <P. Thus, we may first uniquely de­
termine Z to order n by (B23), noting that the right­
hand side can be obtained to that order in terms 
of lower order quantities, already known according 
to the induction hypothesis. Of course, it is supposed 
that h(Z) has been expanded in a Taylor series 
around its zeroth-order argument y, the products 
and quotients expanded out, and the integration 
performed. Similarly, we may then uniquely obtain 
h from (B27), w from (B28) , and finally <p from (B24). 

As a matter of fact, since (B23) and (B27) do not 
involve <p or w, we can find Z and h to all orders 
before finding <p and w at all. 

The construction of Z and <p guarantees trivially 
that they satisfy the initial conditions (B20) to 
order n. At the same time, the construction of h 
and w guarantees that (B25) and (B26) are satisfied 
to order n, and therefore, likewise the periodicity 
conditions (BI9) for v = O. But Zv as determined 
by (B21) is clearly periodic in v up to order n, since 
Z is periodic up to order n - 1 by induction hy­
pothesis, and so the first periodicity condition holds 
in general. Similarly, it then follows that <PV is also 
periodic up to order n and hence that the second 
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periodicity condition holds in general. This com­
pletes the proof. 

It is obvious by our construction that the formal 
series transformation from y and v to z and ep ex­
pressed by (B17) is infinitely differentiable, and we 
can easily show that it possesses an infinitely dif­
ferentiable inverse transformation. It is only. neces­
sary to obtain recursion relations for finding y and v 

order by order, and the proof proceeds like the 
one just completed. The formula for y is merely 
(B23) with its last term shifted to the other side, 
and with the judicious choice we could have ob­
tained the one for v equally simply. As it is, we 
observe from (B24) and (B28) and from the posi­
tiveness of if; that the function which gives ep to 
zeroth order as a function of y and v can be inverted 
to give v to zeroth order as a function of ep and y 
and hence of ep and z; applying this inverse function 
to (B24) [i.e., using each side of (B24) in turn as 
argument of this inverse function and equating the 
results] and expanding leads to an equation whose 
only term of zeroth order on the right is just v, 
which may then be solved for trivially to give the 
desired recursion relation. 

9. Restatement of Formal Result 

Let us restate what has been achieved, omitting 
the intermediate variables y, v and redefining Z, 
<1>, and X accordingly. We have shown that, given 
the original infinitely differentiable system (B4) 
with all solutions nearly periodic, it is possible to 
find a transformation 

z = Z(x) , ep = <I>(x) (B29) 

and functions h(z), w(z) such that the new variables 
satisfy (B18); moreover, the transformation pos­
sesses an inverse 

x = X(z, ep), (B30) 

and Z, <1>, h, w, and X are infinitely differentiable 
infinite series of non-negative powers of e (the 
zeroth-order term of w being definitely positive). 

10. Proof That Series Represents True 
Solution Asymptotically 

We now wish to prove that the solutions of (B18) 
provide asymptotically correct solutions of (B4) and 
also of any true system (Bl) of which (B4) is the 
formal expansion. What this means, roughly speak­
ing, is that if we are seeking the solution of (Bl) 
or (B4) with a prescribed initial value at s = 0, 
and are content with an approximation to within 
some particular positive power of e, then we may 

solve correspondingly approximate versions of (B18) 
instead, with initial values for z and ep obtained 
from that for x by a correspondingly approximate 
version of the transformation (B29) , and convert 
the solutions so obtained into x space by a corre­
spondingly approximate version of the inverse 
transformation (B30). And the claim is that we 
thereby obtain the desired approximate solution of 
(Bl) or (B4), not only for s bounded but even for 
s = 0(1/ e). 

Owing to our desire for results valid for such 
large s, we must initially employ approximations 
up to two orders better than that of our conclusion, 
or than we would have needed to obtain the 
same conclusion restricted to bounded values 
of s. This is because we lose an order of accuracy, 
so to speak, in integrating over a large range of s, 
which we do twice. It is the estimation of the 
mobile phase angle that necessitates much of the 
extra accuracy; the drift of z alone is easier to 
follow, as will become clear. 

To state precisely what we shall prove, let x\s) 
be a solution of (Bl) or alternatively of the system 
obtained from (B4) by truncating the formal series 
at order n + 1 (n ?: 0), so that 

x: = F(xt, e) or x! = f[n+1l(xt); (B31) 

these are of course genuine systems of differential 
equations, and not merely formal. Define z'(s) and 
ep'(S) as those solutions of the equations obtained 
from (BI8) by appropriate analogous truncations 
of hand w which have at s = 0 the values obtained 
from x\O) by an appropriately truncated version 
of transformation (B29); specifically, z'(S) and ep'(S) 
are uniquely defined by the conditions 

z~ = e h [n] (Zl), ep: = wIn] (Zl) , 

Z'(O) = z[n] (x\O», ep'(O) = <I>[n](xt(o». 

(B32) 

(B33) 

Kext, transform to obtain a curve in x space, de­
fining X'(S) as the result of applying the appropriately 
truncated version of transformation (B30) to Z'(S) 
and ep'(S): 

x' = x[n-ll(z', epl). (B34) 

The claim now is that x' is a good approximation 
to xt

, specifically that 

(B35) 

for s within a range of order 1/ e, so long as x t and 
x' stay in the domain of definition of f. [For all we 
know yet this might limit s more severely, but in 
the next section it will be shown that they do stay 
in for s = 0(1/ e).J 
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The proof proceeds in three stages. First we show 
that Zln+ll(xt) is close to z', then that q,lnl(xt) is 
close to qi, and finally that x' is close to xt, as 
desired. We need the three formal identities in x 

Zx·f = eh(Z), 

q,x·f = w(Z) , 

X = X(Z, q,), 

(B36) 

(B37) 

(B38) 

the first two of which express that (B29) transforms 
(B4) into (BI8), and the last that (B30) inverts 
(B29). Or rather, we need their approximate versions 

z~n+ll .fln+ll = e hlnl(zln+ll) + 0(en+2), 

x = xln-ll(zln-ll, q,ln-ll) + o (en) , (B4I) 

the last of which, for instance, may be shown as 
follows: The difference between the left-hand side 
and the first term on the right is a well-defined 
infinitely differentiable function of x and E. Its 
Taylor expansion around E = 0 vanishes identically 
up to terms of order n - 1, since it contains exactly 
the same terms up to that order as occur in the 
formal identity (B38). Thus, the quotient of the 
difference by e" is a continuous function of x and E 
on a closed bounded domain and is therefore bounded 
independently of x and e, which completes the proof. 
The same argument, but with n replaced everywhere 
by n + 2 or n + 1, applies to (B39) and (B40). 

If we temporarily restrict ourselves to the second 
alternative in (B3I), then (B39) evaluated at xt 
may be written 

{Zln+ll(xt) l. = E hlnl(Zln+ll(xt») + 0(r 2
). (B42) 

We now wish to compare this with the first equation 
(B32) , and invoke the approximation theorem of 
Appendix 1. The crux of the proof is to change the 
independent variable first, setting 

11" = e8. (B43) 

The two equations we wish to compare become 
thereby (after division bye) 

{Zln+l1(xt»). = hlnl(zln+ll(xt») + 0(en+1), (B44) 

(B45) 

Thus Zln+ll(xt) and z' satisfy the same autonomous 
system of differential equations within 0(en +1), and 
since by CB33) they also have the same initial 
values within 0(en +1), according to the approxima­
tion theorem 

zln+l 1 (x t) = z' + 0(en+1) (B46) 

for bounded (J", i.e., for 8 = 0(1/ e). (In this, we 
might as well replace the truncation index n + 1 
on the left by n.) This completes the first stage, 
except for the remark that the case of the first 
alternative in (B3I) may be treated in exactly the 
same way by using, instead of (B39), the obviously 
equally valid formula obtained from it by replacing 
the factor f 1n+11 by F. 

The second stage is even simpler. Restricting 
ourselves again to the second alternative (with the 
same trivial modification to cover the first alter­
native), we evaluate (B40) at xt and write it in 
the form 

= w1n1(Z') + 0(en+1) = t/>~ + O(r l
), (B47) 

where we have used (B46) and the second Eq. (B32). 
In view of the common initial values, asserted in 
the second Eq. (B33), a simple integration im­
mediately yields 

q,lnl(xt) = t/>' + O(en) (B48) 

for 8 = 0(1/ e). (Again, we might as well replace 
the truncation index n on the left by n - 1.) 

The third stage is the simplest of all. Evaluating 
(B4I) at xt and using (B46) and (B48) yields 

xt = X1n-11(Z', t/>') + O(En), (B49) 

which, in view of (B34), is precisely (B35). The 
proof is complete. 

11. Proof that the True Solution Remains 
in Domain for Many Gyrations 

We can now demonstrate that xt(8) actually re­
mains interior to the given domain of x space over 
a large range in 8 of order 1/ e. For (B45) shows 
that there is some finite range of (J" over which z' 
stays interior to the corresponding domain of z 
space. This corresponds by (B43) to some definite 
large range of 8, to which we restrict the discussion 
from now on. [Since t/>' is an angle-like variable it 
is subject to no restriction in magnitude, and to be 
sure it varies by O(I/e), as we see from (B32).J 
From (B34) it is then clear that x' is defined and 
interior to the domain, so (B35) holds so long as 
xt stays inside. On the other hand, so long as (B35) 
holds, xt does in fact stay in. Pulling ourselves up 
by the bootstraps in this way, we arrive at the 
conclusion that xt stays inside as long as x' does 
(at least very nearly, though naturally one may 
reach the boundary a little before the other). 

If this argument does not appear immediately 
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convincing (as may well be the case)~ it can be 
elaborated as follows. Knowing that x' stays well 
within the domain for some range of oS of order 1/ e, 

that is, stays a finite distance 0 away from the 
boundary, let us assume (for the sake of a reductio 
ad absurdum) that xt leaves the domain during 
that range. Consider the value of s nearest to zero 
for which xt and x' are at a distance of 0/2. Since 
x t and x' are both within the domain up to that 
point, (B35) applies and shows that they are 
separated by only O(en

), which is much less than 0/2. 
This contradiction proves that x t

, in fact, could not 
have left the domain during the range of interest. 

C. RINGS AND THE REDUCED SYSTEM 

1. Theorem of Phase Independence 

At this point we introduce a simple but powerful 
tool, which we shall apply repeatedly to establish 
that functions are independent of the phase angle fjJ. 

Let W(z, fjJ) be a vector with any finite number M 

of components, a formal infinite series in powers of 
e, 0(1), and a function of its indicated arguments 
z and fjJ, periodic in the latter (of course with period 
unity). Let W satisfy a formal differential equation 

W", = A(z) + e B(z, W, Wz), (Cl) 

where A(z) and B(z, w, v) are vectors of M com­
ponents, formal infinite series in powers of e, and 
functions of their indicated arguments [w being a 
generic variable with M components, and v one 
with M(N - 1) components], and where B is 0(1), 
but no such assumption is made about A. Then W 
is in fact independent of fjJ to all orders. 

To prove this theorem of phase independence, we 
merely form the indefinite integral of (C1), 

W(z, fjJ) = W(z, 0) 

+ f dfjJ [A(z) + e B(z, W, Wz)]; (C2) 

impose the periodicity condition on W, 

L dfjJ [A(z) + e B(z, W, W z)] = 0; (C3) 

and proceed by induction. Up to order minus one 
W vanishes and so is independent of fjJ. Suppose W 
is independent of fjJ up to terms of order n - 1. Up 
to order n, then, the integrand of (C3) is independent 
of fjJ, and so equals its own integral, which vanishes. 
Therefore (C2) may be written 

W(z, fjJ) = W(z, 0) + O(r!), (C4) 

of order n, and thereby completes the induction. 
(And we have as a side result that A = O(e), and in 
fact that A + eB = 0 to all orders.) 

It is clear that we could have allowed B to depend 
on higher derivatives of W with respect to z, with 
no change in the argument or the conclusion. Of 
this we shall make no use, but there is a slight modi­
fication of the theorem which we shall use very 
frequently. Namely, let us specialize by assuming 
that B is a linear function of its last two arguments. 
We can then trivially generalize by allowing W 
to start with any (e.g., a negative) power of e, 
instead of being 0(1), and obviously the same con­
clusion holds. 

Another slight but useful modification is obtained 
by replacing W", by W, in (Cl). Since 

W, = W",w(z) + eWz·h(z), (C5) 

the resulting equation can be immediately put back 
in the same form as (Cl) with A and B appropriately 
modified, so the conclusion still holds. 

It is convenient to observe here, what will be 
needed later and is obvious from (C5), that the 
operators of differentiation with respect to s and to 
fjJ commute with each other. 

2. Arbitrariness of Nice Variables 

It is clear that the nice variables z and fjJ obtained 
in part B are far from unique. For, the process by 
which we determined them involved some arbitrary 
choices, namely of the functions Y and T in Sec. B.5 
and of the form of the initial conditions (B20). We 
address ourselves now to the investigation of exactly 
how much freedom there is finally in the choice of 
such desirable coordinates. 

Suppose that we were to introduce new variables 
zt and fjJt, expressed as infinitely differentiable formal 
infinite series in non-negative powers of e, with 
coefficients depending on z and fjJ, such that zt is 
periodic in fjJ and fjJ t changes by unity with fjJ, and such 
that the transformation is formally invertible to 
give similar expressions for z and fjJ in terms of z t 
and fjJt. We then may ask, first, under what reason­
ably general conditions zt and fjJt will necessarily 
satisfy equations analogous to (BlS). 

An answer is easy to find. For z satisfies an 
autonomous system of equations, and this will 
certainly transform into an autonomous system for 
zt so long as zt is obtained by a transformation from 
z alone, i.e., so long as 

t 
z'" = O. (C6) 

which shows that W is independent of fjJ up to terms [Indeed, it IS then immediate that z! e h\z\ 
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where h\zt) = z:.h(z).] Furthermore, rp may be 
thought of as satisfying the trivial first-order dif­
ferential equation rp. = w(z) if z is considered a 
parameter, and rp t will certainly satisfy a similar 
trivial equation so long as it differs from rp by only 
a "constant," which may of course depend on the 

t "parameter" z (we cannot take rp to be a more 
general linear function of rp, since the two angle 
variables must change by unity together), namely, 
so long as 

t rpq, = 1. (C7) 

[Indeed, it is then immediate that rp: = w t (z \ where 
w\zt) = ~ rp:·h(z) + w(z); note that rp: depends 
on z alone, since rp!z = 0.] 

We next may ask, conversely, whether every 
transformation from z, rp to new nice variables zt, 
rp t in fact satisfies (C6) and (C7). The answer is 
yes; the conditions we have found are necessary as 
well as sufficient to preserve the form of (B18). 
For to begin with, suppose there exists a function 
ht such that 

t t t 
Z. = ~ h (z ); (C8) 

then we may apply the theorem of phase inde­
pendence and deduce (C6). And suppose also that 
there exists a function w

t such that 
t t t) rp. = w (z ; (C9) 

to this we cannot directly apply the theorem of 
phase independence (even though we know that 
zt depends on z only), because rpt is not periodic in 
rp, but we may rewrite (C9) as 

t t( t ) [rp - rp]. = w z) - w(z , (ClO) 

to which we can, because rpt - rp is periodic; we 
thereby deduce that 

[rpt _ rp]", = 0, (ell) 

which is equivalent to (C7). 

3. Rings, Phase Differences, and the 
Reduced System 

The necessary and sufficient conditions (C6) and 
(C7) that new variables z\ rpt be as nice as z, rp 
enable us to introduce some simple concepts con­
nected with the original system (B4) in x which are 
based on the existence of nice variables, but are 
independent of which ones they specifically are. 
These concepts will of course be defined only to all 
orders, and not in general exactly. 

Consider the set of all points in x space which cor-

respond to a common value of z. Since rp is an angle 
variable, this set is a topological circle which we 
call a ring. Two points in x space with the same z 
we call ringmates. Now (C6) has the simple inter­
pretation that zt is constant around any ring, which 
shows that the concept of rings and ringmates is 
invariant with respect to the choice of nice variables. 

The particular value of the phase variable rp cor­
responding to a point x has of course no invariant 
significance. But if two points are ringmates, then 
their phase difference f:.rp does have, for, by (C7) , 

where the integrals are extended over a portion 
of the ring between the two points. Of course this 
phase difference is only defined modulo unity. 

It is also clear that the knowledge of which points 
are ringmates and of the phase differences between 
those that are is all the information inherent in 
knowing some nice variables but independent of 
which ones they are. For from that knowledge one 
can construct nice variables. 

Since z satisfies an autonomous system, it is 
obvious that if two solutions xes) of the original 
system are ringmates at anyone value of s, then 
they are so at every value of s. Also, their phase 
difference is always the same, since (f:.rp). = w(z) -
w(z) = o. It is therefore meaningful to apply the 
invariant concepts of rings and of phase difference 
not only to points in x space but also to entire 
solutions xes) of (B4). 

The ring constitutes a sophisticated or refined 
version of the loop, which is indeed a zeroth-order 
approximation to it. Each ring is characterized by 
its value of z, just as each loop was characterized 
(in Sec. B.5) by its value of y. That is, the rings 
form an (N - I)-dimensional space, and their slow 
drift as s varies is governed by the formal auton­
omous system 

z .. = h(z), (CI3) 

where we have reintroduced the change of inde­
pendent variable (B43) to IY = ~ s in order that what 
we shall call the reduced system (C13) might be 
in the same general form as the original system (B4) 
(though not necessarily in standard form). The 
phase now plays a subordinate role (in contrast to 
its previous rather dominant one), since it has no 
effect (to any finite order) on the drift. 

Among other things, we have shown that the 
nearly recurrent system (B4) is splittable. The new 
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autonomous system z, = ~ h(z) contains one less 
variable. 

If (C13) should itself happen to be nearly re­
current and in standard form, we can reapply the 
whole procedure to it and obtain a doubly reduced 
system, and so on. The arguments of Sec. B.ll can 
then be extended to show that the true solution 
xt(s) of (B3l) remains in the relevant domain of 
x, space for a range of s even larger than 0(1/~). 

4. Roto-rate 

It should at this point be apparent that all the 
information contained in knowledge of the rings and 
of phase differences on them is contained, in "cap­
sule" form, in knowledge of x¢. For, as we show in 
detail shortly, the rings are obtainable from x¢ by 
integration of an autonomous system whose inde­
pendent variable is the phase. It is noteworthy that 
in terms of x¢ as a function1S of x we may express 
our results entirely within x space, even though it 
was convenient to transform to other variables in 
deriving them; so expressed, furthermore, the results 
take on an esthetically satisfying uniqueness, since 
for any other nice coordinates zt, cPt we have 

t t ) x .. = Xzt· z¢ + X¢t cP¢ = X</>t (C14 

by (C6) and (C7). The function merits a specific 
name and symbol, and so we define the rota-rate 
R(x) by 

R == X</> , (CI5) 

the name being supposed to suggest the defining 
characteristic of R as the rate of change (with 
respect to phase) of the point at x in rotating around 
its ring. 

We next derive four properties of R which can be 
expressed independently of nice coordinates, rings, 
and phases, and show afterward that these properties 
characterize it uniquely. The first property is that 
the autonomous system (C15) is recurrent; this is 
obvious because every solution in fact runs around 
a ring. The second property (also obvious) is that 
the initial value recurs (for the first time) when the 
independent variable cP has increased by unity; this 
may be expressed by writing 

J dx = 1 
j R ' 

(C16) 

where the line integral is taken once around any 

18 Of course, x is to be treated as a function of <I> and z 
through the transformation (B30) when the differentiation is 
performed, but the derivative may then be treated as a 
function of x by the inverse transformation (B29). 

integral curve of R, and the ratio of vectors is 
defined, since precisely on such a curve the vectors 
are parallel (and, in fact, dx = x</> dcP = R dcP). The 
third property is that to lowest (zeroth) order, R 
is parallel to f and unequal to zero, as seen im­
mediately from (B4) and from (C5) with W re­
placed by x. Finally, the fourth property is that 

fl::·R = R.·f, (C17) 

which expresses the consistency of (B4) with (C15) 
and is, in fact, a trivial rewriting of 

fx'x</> = fq, = x,¢ = x¢, = Rs = Rx'xs, (CI8) 

in which we have used the observation at the end 
of Sec. C.l. 

To show that the roto-rate is uniquely charac­
terized by these four properties, it suffices to show 
that for any (infinitely differentiable formal series) 
function R with these properties we can find nice 
variables z and cP such that (C15) holds. This is 
because for any other function R t with the four 
properties we could then find nice variables z t and cf> t 

such that Rt = X .. t, whereupon (C14) would show 
immediately that R = Rt. 

We may construct the desired nice variables as 
solutions of 

zx·R = 0, 

cPx·R = 1; 

(C19) 

(C20) 

that is, the z are constructed to be (of course inde­
pendent) constants on the closed (first property!) 
integral curves of R, and cP to be multi-valued. That 
cP is an angle variable, i.e., that its branches differ 
by integers, follows from (C16) (second property!), 

f dcP = f cPx· dx = f cPx·R dx/R = 1. (C2l) 

The coordinates cannot be degenerate, since the z 
were chosen independent and, if cP were expressible 
as a function of z, we would have cPl::' R = 0 as a 
consequence of (C19), contradicting (C20). We may 
therefore employ a standard representation of the 
unit dyadic in the derivation 

R = .'f·R = (xz,zx + x¢cPx)·R = x</> , (C22) 

which verifies (C15). It is now fairly easy to establish 
one of the main properties of nice coordinates, that 
Zs and cPs are functions of z only19: 

19 In this paragraph we cannot appeal to the commutativity 
of the differentiations, which would enable us to bypass 
several intermediate steps in (C23), because we do not yet 
know that z, <I> are nice coordinates, that being, indeed, 
what we wish to establish. 
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(z.)", = (zx·f)x·R = zu:f R + zx·fx·R 

z=:R f + zx·Rx·f 

(zx·R)x·f = 0, 

(C23) 

using successively (B4), (CI5), the symmetry of 
the triadic Zu in its last two vector positions, (CI7) 
(fourth property!), and (CI9); and the same for </> •• 

This already shows that </>. may be written as w(z); 
to show that z. may be written as ~h(z) it remains 
only to note that zx·f = O(~), in view of (CI9) 
(third property!). 

It does not appear obvious whether an explicit 
recursion formula to determine R in terms of f can 
be found. If so, the whole theory of this paper might 
be simplified and rendered less deep. 

D. HEREDITARY PROPERTIES 

1. Definition 

We now have a systematic formal procedure which 
we can apply to any nearly recurrent formal system 
in N dependent variables, enabling us to "take out 
the fast gyration" and find a reduced system in 
N - I dependent variables which describes the drift 
of rings to all orders. There are, as we shall see, a 
number of properties of systems of differential 
equations which, if possessed by the original system 
(B4), are carried over or inherited by the reduced 
system (CI3). We shall call a property of systems of 
differential equations hereditary if, whenever it holds 
for the original system (at least in the formal sense 
of expansions to all orders), it also holds for the 
reduced system. This definition, like that of local 
dependence, is metamathematical and need not be 
used with great strictness. 

2. Inheritance of Splittability 

As a first, fairly trivial, example of an hereditary 
property consider that of being splittable (Sec. A.7). 
If (B4) is splittable, and if the functionals which 
depend locally on f(x) and define the M new variables 
satisfying the new autonomous system are ex­
pansible in power series in ~, with zero-order leading 
terms, then the new autonomous system obviously 
also has all solutions nearly periodic and can be put 
into standard form by an appropriate change of 
variables. Introducing new nice variables, it can 
be seen by the methods of part C that the new angle 
variable is essentially the same as (and could have 
been chosen to be in fact the same as) the original 
angle variable </>, and thus that the reduced system 
of the new autonomous system is the new autono-

mous system of the original reduced system (CI3). 
Therefore the original reduced system is splittable, 
and the decrease in number of dependent variables 
as a result of the splitting is the same as for the 
given splittable system (B4). 

3. Inheritance of an Integral (Constant of Motion) 

An important and simple hereditary propert.y is 
the possession of an integral (independent of 8). 
To see this let lex) be an (expansible) integral of 
(B4); that is, let 

(DI) 

so that I is constant on every solution of (B4). By 
the theorem of phase independence we immediately 
deduce that I is a function of z only, and is there­
fore also an integral of the reduced system (CI3). 

It follows from this that (B4) cannot possess a 
complete set of integrals (N functionally indepen­
dent integrals) all of which are expansible. For (CI3) 
can of course have only N - I independent integrals. 
Any integral of (B4) which distinguishes between 
ringmates is inexpansible. 

4. Inheritance of Invariant Measure 

Another interesting hereditary property is pos­
session of an invariant measure. Let p(x) be the 
measure density of a measure which is invariant 
under the "flow" represented by (B4); that is, the 
measure of any region in x space is the integral of 
p over that region, and the measures of the images 
of that region for different values of 8 under the 
"motion" (B4) are all equal. The mathematical 
expression of this invariance is just the "time­
independent" equation of continuity 

g : (p f)x = 0, (D2) 

where the left-hand side is nothing but the di­
vergence of p f, written in accordance with our sub­
script-differentiation notation. This may also be 
written 

p. + p g : fx = 0. (D3) 

Such an invariant measure is intrinsically inde­
pendent of coordinate system. In z, </> space it has 
the measure density T(Z, </» obtained from p by 
multiplying by the Jacobian of x with respect to 
z, </>. We then ha\'e (D2) and (D3) in the forms 

g: (TEh)z + (TW)", = 0, (D4) 

T. + ~ T g : hz = 0. (D5) 

If p is expansible in a power series then of course 
so is T (since the Jacobian certainly is), hence by the 
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theorem of phase independence r is a function of z 
alone. Thus (rw)", = 0, and (D4) becomes for the 
reduced system the precise analog of (D2) for the 
original system, which proves the inheritance. 

5. General Integral Invariants 

The last two hereditary properties discussed are 
essentially special cases of a more general one, 
possession of an integral invarianeo of any degree m. 
They correspond in fact to the extreme cases m = ° 
and m = N, whose particular simplicity seemed to 
merit separate treatment. We confine ourselves in 
this section to the case m = 2, which is perhaps 
uniquely characterized as being enough like the 
general case to permit immediate generalization21 

of all concepts, results, and non-notational features, 
yet simple enough to permit handling in our index­
free notation with no further special conventions and 
no particular clumsiness. However, we consider not 
only absolute integral invariants but also relative 
integral invariants. 

Let a(x) be an antisymmetric dyadic22 field in 
x space. Then a : dx dx is a second-order differential 
form23 whose integral over any surface imbedded 
in x space constitutes a sort of measure for such 
surfaces. The rate of change of this measure with 
respect to s, as (each point of) the surface varies 
with s according to (B4), is another measure similarly 
associated with the differential form 

The condition that a : dx dx be a relative integral 
invariant is that (D6) vanish upon integration over 
every closed surface, the condition for which in turn 
is that there exist a single-valued vector field Vex) 
satisfying 

(D7) 

where the right-hand side is just the curl of V. 
In this case the measure of any closed surface stays 
constant as the surface flows. The condition that 
a : dx dx be an absolute integral invariant is that 
(D6) vanish upon integration over every (not 
necessarily closed) surface, namely that the left­
hand side of (D7) vanish. In this case the measure 
of any surface at all stays constant as the surface 
flows. 

6. Inheritance of Relative Invariants 

Transforming to nice coordinates we have 

a :dxdx = a: (xz'dz + x",dcp)(xz·dz + x",dcp) 

= CB : dz dz + C· (dz dcp - dcp dz), (DS) 

where there can of course be no dcp dcp term (and 
its coefficient would vanish anyway), and where 

(D9) 

The condition that (DS) be a relative invariant, 
obtainable in the same way as (D7) or by trans­
forming (D7), is that there exist single-valued W(x) 

(a : dx dx), = a, : dx dx + a : (df dx + dx df) and T(x) such that 

= (a, + a·fx + xf·a) : dx dx. (D6) CB, + CB'f hz + f zh.CB 
20 See De Donder [Th. De Donder, Theorie des invariants 

integraux (Gauthier-Villars, Paris, 1927)] for the definitions, 
for a clear exposition of the general theory of integral in­
variants, and accordingly for a justification of some of the 
steps in this section. Strictly speaking, the hereditary property 
is possession of an integral invariant whose degree is less 
than the order of the system by a definite integer, since 
an invariant of degree m of the original system induces one 
of degree m - 1 of the reduced system. The word "essentially" 
above is to indicate that from this point of view the property 
of Sec. 3 is slightly anomolous. 

21 The important case m = 1 may be even more imme­
diately obtained by the opposite process (here "degradation" 
rather than specialization), and moreover is illustrated by 
the theory of Hamiltonian systems in part E (as also is the 
case m = 2 for a relative invariant), where the invariant 
has the special form p' dq. 

22 In the general case it should be a completely anti­
symmetric m-adic, which changes sign under the transposition 
of any two "vector locations" (in index notation a tensor 
of order m which changes sign under the interchange of any 
two indices). 

23 It should be noted that dx dx (often written dx 1\ dx in 
the literature) is, despite appearances, neither symmetric 
nor a dyad, but rather an antisymmetric dyadic. Indeed, 
since (l is antisymmetric, any symmetric component of dx dx 
would contribute nothing to the differential form. The 
interchange of vector order reverses the orientation of the 
surface element dx dx and with it the sign. In fact, on any 
surface determined by giving x as a function of two parameters 
u and v, we have dx dx = (xu xv - Xv xu) du dv. 

- C W z + W z C = Wz - z W, 

C. + C·ehz = Tz - W",. 

(DlO) 

(Dll) 

Let us denote the complete integral over phase 
(equivalently, the closed line integral around a ring, 
or the average value with respect to cp) by an 
asterisk. Then from (Dll) we have immediately 
(since differentiations and integrations with respect 
to cp and to s commute) 

(D12) 

This is just the condition [analogous to (D7), but 
of order one less] that C*·dz be a relative integral 
invariant of the reduced system. If a and V are 
expansible in e then so are C and T and so also C* 
and T*. Thus the inheritance of a relative in­
variant is proved. 

Of course C*·dz might happen to be a trivial 
relative invariant, in the sense of its integral having 
a constant value independent of the closed path 
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it is taken over. This is the case only if C* is a gra­
dient (i.e., a z derivative), so that its curl vanishes, 

C~ - zC* = o. (Dl3) 

But then we are amusingly compensated in that 
the phase integral of (DlO) can be written 

CB~ + CB*'fhz + fzh·CB* 

= (w* + C* w)z - z(w* + C* w), (Dl4) 

which is just the condition [analogous to (D7)] 
that CB* : dz dz be a relative integral invariant of 
the reduced system. 

7. Inheritance of Absolute Invariants 

There was an element of humbug in the just 

systems, such as those with "slowly changing ex­
ternal parameters," are not excluded by this, since 
they can be converted to time-independent form 
by the well-known device of treating time and energy 
as a new additional pair of conjugate coordinates. 
See also Sec. B.4.) The q and p jointly satisfy the 
autonomous system constituted by Hamilton's 
equations 

(El) 

In order to allow the widest latitude in applica­
tions, we do not require that (El) be in standard 
form, but merely that there exist some (monotonic) 
transformation of the independent variable 

t f--+ 8 (E2) 

described inheritance of relative invariants. The fact and some transformation of the dependent variables 
is that any relative invariant of a system yields 
lower order relative invariants upon integration over 
closed sub-manifolds, so that if the system is split­
table, then when the nonautonomous variables are 
integrated out, a relative invariant of the new 
autonomous subsystem is obtained. That the "nice­
ness" of the nice variables was really irrelevant is 
apparent in that the theorem of phase independence 
was not invoked. With the inheritance of absolute 
invariants the situation is otherwise, and we are 
back in our subject proper. 

If (t : dx dx is an absolute invariant, then trans­
forming to nice variables and introducing CB and C 
by (D9) as before, we have (DlO) and (Dll) with 
the right-hand sides replaced by zero. From the 
latter we see, first, by the theorem of phase inde­
pendence, that C depends only on z, and second, 
as a consequence, that C ·dz is an absolute invariant 
of the reduced system. From the former, we then 
see that CB depends only on z, but it is not apparent 
what more can be deduced, unless C· dz is a trivial 
invariant, in which case CB : dz dz is easily seen as 
before to be a relative invariant (or unless either 
of the very special cases C = 0 or Wz = 0 obtains, 
when CB : dz dz is of course even an absolute in­
variant). 

E. HAMILTONIAN SYSTEMS 

1. Preparatory Transformations 

The hereditary property with the perhaps most 
important applications is that of being in Hamil­
tonian form. Let the dependent variables consist 
of the N = 2M canonically conjugate coordinates 
q and p, and let the Hamiltonian H(q, p) be single­
valued and time-independent. (Time-dependent 

q, P f--+ X (E3) 

which take the system into the standard form (B4) 
with all solutions nearly periodic. (The only reason 
for permitting the former transformation is to 
normalize the magnitude of f; therefore, t and 8 will 
generally differ at most by a factor which is some 
power of f.) Applying now our general theory, we 
make a further transformation of dependent vari­
ables 

q,p f--+ X f--+ z,c/> (E4) 

to nice variables satisfying (BlS). Here x has been 
a mere intermediary and is of no further interest. 

2. Action Integral 

It is well known that p·dq is a relative integral 
invariant (see Sec. D.5) of every Hamiltonian 
system; .indeed, this property may be used to define 
Hamiltonian systems. In other words, the line 
integral § p. dq taken around any closed curve 
remains constant in the course of time if (every 
point of) the curve varies in accordance with the 
equations of motion (El). In this way one may 
construct any number of constants of motion, which, 
however, are for the most part not useful, because 
not locally computable (see Sec. A.4). There is no 
way of telling what the family of closed curves 
chosen at one time will have become at a later time, 
except of course by fully solving the equations of 
motion, the very task to avoid or (to help) to effect 
which one would like to know constants of motion 
in the first place. 

In the present situation there is, nevertheless, a 
family of curves admirably suited to the construc­
tion of a useful constant of motion; these are the 
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rings, which as a family remain invariant (since 
rings flow into rings; see Sec. C.3), and which are 
to an adequate degree locally computable (not local 
to a point, but local to the loop through a point). 
Accordingly we define the "phase integral of action" 

J(z):=; f p·dq = f dcp P'q<f>, (E5) 
ring z 

in which q and p are to be thought of as functions 
of z and r/> in accordance with (E4). It is perhaps 
worth giving the trivial direct proof of the constancy 
of J to all orders: since differentiation with respect 
to s commutes with differentiation or integration 
with respect to r/>, so does differentiation with respect 
to t, whence 

J t = f (Pt ·dq - qt ·dp) 

= -f (Hq·dq + Hp·dp) = -f dB = 0, (E6) 

where in the first step we have integrated the second 
term by parts and in the next we have used (El). 
(Incidentally, J is obviously also invariant under 
canonical transformations.) 

The constancy of J to all orders clearly holds 
for ranges of the independent variable of order E-" 
for any n, so long as J remains defined. 

3. Poisson Brackets 

Let a and <B be any polyadic functions of the 
state of our physical system, i.e., of q, p. Their 
Poisson bracket is defined (as standardly) by 

[a, <B] = aq'p<B - ap·q<B. (E7) 

We shall need the formula 

[a, <B]. = [a" <B] + [a, <B.J, (E8) 

which is immediately equivalent to its analogue 
with t derivatives in place of s derivatives (multiply 
by t, or St to go back or forth), a well known formula 
easily derived by straightforward calculation using 
nothing more than (El). 

Now, by (E8), (B18), and (E7) we have 

[z, z], = [Eh, z] + [z, Eh] 

[r/>, z]. = [w, z] + [r/>, E h] 

= wz'[z, z] + E [r/>, z]'zh, (E11) 

so that, again by the theorem of phase independence, 
which applies in view of (ElO), 

[r/>, z]</> = o. (E12) 

We need the two formulas 

[z, z]·(zp·q</> - zq·p</» = 0, (E13) 

[r/>, z]·(zp·q<f> - zq·p</» = 1. (E14) 

The short way to establish them is to observe that 
their common parenthetical factor is the Lagrange 
bracket of z and r/> and to exploit the well-known 
relationship between the Poisson and the Lagrange 
brackets, in view of the fact that the summation 
indicated by the left-most dot in each of them runs 
over a set of variables complete except for the 
omission of r/>, for which the Lagrange bracket would 
vanish anyway. Of course (E13) and (E14) can also 
be easily established by direct calculation. It is only 
necessary to expand them out by (E7) and the 
distributive law and then to make use of relations 
(coming from the chain rule for differentiation) 
between the derivatives of q and p with respect to 
z and r/> and vice versa, namely 

qz' Zq + q<1> r/>q = qq = fJ (E15) 

and similar relations based on two-sided evaluations 
of qp, Pq, PP' Zq" and r/></>. (The two remaining similar 
relations coming from Zz and r/>z are not needed.) 

We are now prepared to evaluate two particular 
Poisson brackets of interest. One is 

[z, J] = [z, z]·Jz 

= [z, z]· f dr/> (zp·qq, - zq .pq,) = 0, (E16) 

where the first equation is seen to hold by (E7) and 
the fact that J depends on z alone, the second by 
direct differentiation of (E5) followed by an inte­
gration by parts, and the last by (E13) after [z, z] 
has been brought inside the integral by virtue of 
(ElO). The other is 

[r/>, J] = 1, (E17) 
= Ehz'[z, z] + E [z, z]'zh, (E9) as seen in the same way using (E14) and (E12). 

so that by the theorem of phase independence the 
(obviously antisymmetric) dyadic [z, z] is a function 
of z alone, 

[z, z]<f> = o. (ElO) 

{Note that although there is no reason to suppose 
that [z, z] is 0(1), the theorem is applicable anyway 
because (E9) is linear.} In the same way we have 

4. N ontriviality of Action Integral 

We digress momentarily to point out that J 
can hardly be a trivial constant of motion. It 
certainly cannot be completely trivial, in the sense 
of being an outright constant, for then its Poisson 
bracket with any other quantity would vanish, 
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contradicting (EI7). But suppose that J can be 
expressed as a function of H alone, which is obviously 
a kind of triviality since H is, of course, automatically 
a constant of motion. Now J H cannot vanish, else 
we would have [cf>, J] = [cf>, H]J H = 0, contradicting 
(EI7) as before, so we may invert the relationship 
and express H as a function of J. Then 

z, = [z, H] = [z, J]H J = 0, (EI8) 

where the first equation is well known and obvious, 
and the last is a consequence of (EI6). Thus the z 
provide a complete set of integrals of the system. 
Only in this extremely special case can J be a 
function of H alone. 

5. Reduced Hamiltonian System 

We continue with our program of showing the 
hereditary character of being Hamiltonian. To this 
end we wish to put the reduced system into Hamil­
tonian form. Through the reduction process itself 
we have gotten rid of (or "left behind") one variable, 
cf>, and now that we have the nontrivial constant of 
motion J, we may use it to eliminate another 
variable. Thus we may hope to put the remaining 
system of 2M - 2 variables into the form of a 
Hamiltonian system of M - I degrees of freedom. 

Our actual procedure for obtaining this reduced 
time-independent Hamiltonian system is to make a 
canonical transformation from our original set of 
M pairs of canonically conjugate coordinates (q, p) 
to a new set of which one pair is (cf>, J) and of which 
the remaining M - I pairs, to be denoted col­
lectively by (Q, P), are also locally computable. 
Now the necessary and sufficient condition that 
the transformation to a new set of pairs of co­
ordinates be canonical is that the Poisson bracket 
of any two new coordinates be zero if they come 
from different pairs and unity if they constitute a 
pair (in the right order). Because of (EI7) it is not 
immediately excluded that we can find a canonical 
transformation of the kind described, but it is also 
not immediately obvious that we can. In Appendix 2 
it is shown24 that whenever one knows some of the 

24 A very similar theorem is demonstrated by Nordheim 
and Fues [L. Nordheim and E. Fues, Handbuch der Physik, 
edited by S. Fliigge (Julius Springer, Berlin, 1927) B.5, 
Kap. 3, Ziff. 10], who assume that an integral is known and 
show how this can be used to reduce to a Hamiltonian system 
of one less degree of freedom; one finds a canonical trans­
formation to new coordinates one of which is the known 
integral, in which case its conjugate coordinate obviously is 
ignorable. In our present application the ignorable coordinate 
</> has come first. It is not on account of this minor difference 
that a separate discussion is appended, but rather partly to 
keep this paper as self-contained as possible and partly 
because the method is so simple and seems to offer a slightly 
unconventional insight into the nature of the Poisson bracket 
conditions. 

new coordinates of a proposed prospective canonical 
transformation, and these coordinates satisfy all 
the requisite Poisson bracket conditions among 
themselves and have linearly independent deriva­
tives with respect to the old coordinates, then one 
can indeed define the missing coordinates (in a way 
locally dependent on the Hamiltonian) so as to 
form a complete canonical transformation; further­
more the whole construction is obviously valid order 
by order when the coordinates involved are con­
strued as series. 

The condition of linear independence of the 
derivatives is certainly satisfied, for if we had, say, 

(EI9) 

we could immediately deduce 

[cf>, JJ = k[cf>, cf>J = 0, 

once again contradicting (EI7). Accordingly, we 
may assume that we now have the sequence of 
transformations 

cf>, z ~ q, p ~ <I> , J, Q, P, (E20) 

where, in view of the discussion in Sec. A.3, we have 
introduced the new symbol <I> (not to be confused 
with the <I> of part B) for cf> in its role as a member 
of the new set of variables, so that 

(E21) 

may be used freely except to substitute one subscript 
for another (but see below!). The new variables Q 
and P have been so constructed as to satisfy the 
correct bracket conditions 

[Q, QJ = 0, [Q, PJ = 9, [P, PJ = ° (E22) 

among themselves and also the "cross-conditions" 

° = [Q, <I>J 

o = [Q, JJ 

[Q, cf>J = Qz'[z, cf>], (E23) 

Qq, [cf>, J] + Qz' [z, JJ = Qq" (E24) 

and the same with Q replaced throughout by P. 
From (E24) we see that Q and P actually are 
independent of cf>, like J, so that the transformation 
z ~ J, Q, P is wholly independent of cf>, and we 
may (and from now on do) obliterate completely 
the distinction between <I> and cf>. 

The new Hamiltonian is of course just the old 
one H itself, naturally expressed now as a function 
of the new canonical coordinates through the 
transformation (E20). In the new coordinates, 
Hamilton's equations take the form 

(E25) 
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J t = -H"" (E26) 

Qt = H p , P, = -HQ • (E27) 

Since CPt = CPs 8t = W 8" (E25) yields the familiar 
sort of relation between the frequency and the 
derivative of the Hamiltonian with respect to the 
action variable. Since J t = 0, (E26) shows that H 
is independent of cP, which we might have known 
anyway from the fact that H is an integral of the 
system (see Sec. D.3). It is now clear that (E27) 
constitutes a one-parameter family (parametrized 
by J) of autonomous Hamiltonian systems. 

6. Possibility of Repetition and Further Invariants 

As a consequence of our ability to put the reduced 
system back into Hamiltonian form, we see im­
mediately that if the reduced system itself has all 
solutions nearly periodic (naturally with a period 
longer than the period of the original system at 
least by an order of E), then there exists also another 
constant of motion 

J' == f P·dQ = f dq/ p.Q"", (E28) 
ring Z' 

where z' and cp' are the new nice variables for the 
reduced system, 

z ~ J, Q, P ~ z', cp' (E29) 

As-one should expect, it is by no means necessary 
to go through the complicated integration process 
involved. in finding Q and P in order to compute J', 
for 

J' = f dcp' (P'Q1>' + J cfJ",,) = f dcp' p.q1>" (E30) 

since cp"" = 0 [the transformation (E29) being in­
dependent of cfJ] and the differential form p·dq is 
a canonical invariant. 

Because Q and P are locally computable, so is J'. 
Furthermore, J' cannot depend on J only, nor 
even on J and H only except in the very trivial 
special case that we can find a complete set of 
integrals. Incidentally it may be noted that there 
is no chance here of finding still another integral 
by the well-known device of forming the Poisson 
bracket of two already known, since by a further 
canonical transformation we can introduce a set of 
canonical coordinates among which are the con­
jugate pairs (cp, J) and (cp', J'), which demonstrates 
that 

[J, J'] = 0 (E3l) 

in addition to three other such relations. 

If the new reduced system should itself happen 
to have all solutions nearly periodic we can find 
still another integral J" and ignore another angle 
variable cfJ", and so on indefinitely, till the successive 
near periodicities run out. If the internal degrees 
of freedom run out first, we end up with a complete 
(asymptotic) description of the system in terms of 
M ignorable angle variables and their M locally 
determined conjugate action variables. 

F. APPENDICES 

1. Fundamental Approximation Theorem 

For the sake of completeness we give here a brief 
outline of the well-known proof that two functions 
which satisfy nearly identical autonomous systems 
and have nearly equal initial values are themselves 
nearly equal for a bounded range of the independent 
variable. Let xes) and xt(s) satisfy 

x, = f(x) , x: = text) + y(x\ (Fl) 

x (0) = x\O) + 0, (F2) 

where y and 0 are small quantities whose norms 
(maximized over x space in the case of y) we denote 
by'Y and o. (Any reasonable norm may be employed, 
and will be denoted by absolute value signs.) In 
the region of interest in x space f satisfies a Lipschitz 
condition, 

If(x') - f(x") I ::; c lx' - x" I (F3) 

for an appropriate positive constant c and any x' 
and x" (if only because fx exists and is continuous 
on a closed bounded domain and therefore has all 
components bounded). To estimate the difference 
we have 

Ixt - xl = [x\O) - x(O) 

+ f ds [f(xt) + y(xt) - f(x)] [ 

::; 0 + f ds [c Ixt - xl + 'Y], (F4) 

for simplicity restricting ourselves to non-negative 
values of s. Now the maximum value J.I(s) of Ixt - xl 
in the range from ° to 8 satisfies 

J.I ::; 0 + f ds [CJ.l + 'Y] 

::; 0 + s[cJ.l + 'Y], 

so that for s ::; 1/2c (for instance) we have 

(F5) 



                                                                                                                                    

826 MARTIN KRUSKAL 

J.I. =::; (15 + 'Ys)/(l - cs) =::; 215 + 21's. (F6) 

In order to obtain an estimate for larger values 
of s we could apply (F6) over and over again, pro­
ceeding in steps of size 1/2c and using the final 
estimate at each step as the initial estimate corre­
sponding to (F2) for the next step. In this way we 
would obtain an exponential estimate, which is, 
however, more elegantly and perhaps simply ob­
tained by noting that an upper bound for Ixt - xl 
is provided by the function pes) which satisfies the 
equation obtained from (F4) by replacing Ixt - xl 
by P and S; by =. Indeed, the difference D -
P - Ixt - xl satisfies 

D ~ c f ds D, (F7) 

(F8) 

whence upon integration from 0 to s it follows that 
the right-hand side of (F7) and a fortiori D are non­
negative. But it is trivial to solve explicitly for P, 

and we find that 

Ixt - xl S; P = (15 + 'Ylc)eCO 
- 'Ylc. (F9) 

That there can be no estimate radically better than 
this is obvious from even the simplest examples. 

The standard uniqueness theorem is of course 
obtained as the special case "( = Ii = o. 

2. Completion of Canonical Transformation 

The necessary and sufficient conditions that a 
transforma tion 

t t 
q, P ~ q, p (FlO) 

be canonical are of course the fundamental Poisson 
bracket relations 

(Fll) 

A consequence of these relations is that the deriva­
tives of the components of q t and p t are linearly 
independent (and a fortiori that the components 
themselves are functionally independent), since for 
any linear combination of these derivatives which 
vanishes, 

t t t t ( a·qq + b·pq = 0, a·qp + b·pp = 0, F12) 

we have, by (Fll) and (F12), that 

and pt in a proposed transformation (FlO). We wish 
to prove that we can construct the remaining com­
ponents. Let q, p, qt, pt each have ]1,1 components. 
We denote the N < 2M given components (of both 
qt and pt, not necessarily paired) collectively by a, 
and require them to have linearly independent 
derivatives and to satisfy those components of 
relations (Fll) which involve them alone. Since we 
can proceed by mathematical induction, it suffices 
to construct one of the remaining components of 
q t or p \ say of qt. We denote this component by q' 
and its conjugate by p'. We must construct q' to 
satisfy those components of relations (Fll) which 
involve it and the a. These conditions on q' have in 
fact the form 

[a, q'] = c, (FI4) 

where c is constant and, to be sure, has all com­
ponents zero except for at most one of them, which 
equals -1 (that component, if it is among the a, 
which corresponds to p'). 

Conditions (F14) amount to a prescription of the 
directional derivative of q' in each of a number of 
directions, one for each component of a. These 
directions are linearly independent, since the deriva­
tives of the components of a are. We next inquire 
into the conditions for the compatibility of (F14), 
namely the conditions that the second derivatives 
of q' be the same independently of the order of dif­
ferentiation. The dyadic second directional deriva­
tive of q' (which, if expanded out, contains first as 
well as second derivatives of q') is 

[a, [a, q']] = [a, c] = 0, (F15) 

since c is constant. Taking the directional derivatives 
in the reverse order gives 

- [[a, q'], a] = ° (F16) 

[which happens to be the transpose of (F15)]. This 
has the same second derivatives of q', so we obtain 
the consistency conditions by taking the difference 

[a, [a, q']] + [[a, q'], a] = 0. (FI7) 

Now, Jacobi's identity, written for two vectors and 
a scalar with due regard to the dyadic order, is 

[a, [a', q']] + [[a, q'], a'] + [q', [a, a']] = 0, (F18) 

the middle term being the transpose of [a', [q', all 
(F13) Taking a' to be a, we see that (F17) is equivalent to 

and similarly that b = 0. 
Suppose now that we are given, as functions of 

q and p, some but not all of the components of q t 

[[a, a'], q'] = 0, (F19) 

which is explicitly devoid of second derivatives of 
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q'. But [a, a'] is a constant dyadic, all of whose com­
ponents are ° or ±1, in view of (Fll) , so (F19) 
holds identically. 

Since the compatibility conditions are satisfied 
(tautologously), it follows from the general theory 
of partial differential equations that (F14) has a 
general solution q' with the freedom of an arbitrary 
function of 2M - N variables. From the geo­
metrical point of view, indeed, we have shown that 
the N-dimensional vector space determined at each 
point by the directions of the directional derivatives 
[a, ... J there, is the tangent space of a (2M - N)­
dimensional family of N-dimensional hypersur­
faces. 25 In (F14) we have a complete prescription of 
the derivatives of q' as a function on each hyper­
surface, but no restriction on the variation of q' 
from one hypersurface to another. Clearly q' is 
determined up to a constant (its "initial value" 
at any given point) on each hypersurface. 

It remains only to show that the arbitrariness 
in q' permits us to choose it in such a way that the 
derivatives of q' and the a will be linearly inde­
pendent. This is merely a matter of counting di­
mensions, for suppose contrarily that 

(F20) 

If p' is among the a, then since [a, q/] vanishes in 
all except that component, and since by (F20) 

0= [q', q/] = k'[a, q/], (F21) 

it follows that the corresponding component of k 
vanishes. Similarly, if any (other) two conjugate 
coordinates q", p" are among the a, the corre­
sponding components of k must both vanish, else 
by means of (F20) we could solve for and eliminate 
the derivatives of either q" or p" and by (Fll) 
obtain the contradiction 

1 = [qll, p"] = O. 

Let the number of such pairs be L, so that the 
number of unpaired components of a is N - 2L. 
Obviously 

N - L = (N - 2L) + L ~ M, (F22) 

or N - 2L - 1 if p' is among the a; thus in either 
case it is strictly less than 2M - N. But q' has the 
freedom of an arbitrary function of 2M - N 
variables, so its derivatives span a (2M - N)­
dimensional linear space, contradicting (F20). 

3. Iterated Near-Identity Mappings 

There is a strong and intimate connection between 
the asymptotic theory of nearly recurrent systems 
and the asymptotic theory of iterated near-identity 
mappings, which has previously been treated less 
satisfactorily by Kruskal5 and applied by Spitzer.4 

In this section we describe the latter theory and 
explore the connections. 

A near-identity mapping of a space of vectors ~ 
into itself is a function, T(~) say, which can be 
written in the form 

T(~) = ~ + ~ D(~), (F24) 

where D(~) may be a series in powers of ~ and is 
required to be 0(1). Associated with such a trans­
formation (as with any) is the sequence of its 
iterates, the transformations r(~) defined recur­
sively by 

Tim == Tm, (F25) 

where n runs over the positive integers.26 We then 
ask for an asymptotic description (as ~ --+ 0) of the 
discrete "trajectory" of a point ~ under iteration 
of T, i.e., of the sequence of points rm, n = 
0,1,2, .... 

Obviously as ~ --+ 0 the points get closer and 
closer together. For any fixed n, of course Tn(~) --+ ~, 

but this does not imply that the trajectory as a 
whole collapses into the initial point, since for n 
taken approximately equal to c/ ~ (where c is a 
constant) we may expect r(~) to remain distinctly 
away from ~ and indeed to converge to a limie7 

different from ~. Rather, the discrete trajectory ap­
proximates better and better to a continuous (and 
smooth) curve denoted by 5(0) (0") and determined by 

(F26) 

the right-hand equality holding only if p' is among the latter being obtained from (F24) by replacing 
the a. The number of possibly nonzero components ~ by r(~) and then going to the limit after making 
of k is the identifications 

N - 2L = 2(N - L) - N ~ 2M - N (F23) 

2. See Newcomb [W. Newcomb, Ann. Phys. 3, 347 (1958)] 
for a heuristic description of the theory of such questions. 
In his terminology, we have shown that the "cross-bracket" 
of any two directions of differentiation is zero. 

(F27) 

26 Obviously (F24) can be formally inverted to yield an 
inverse transformation T-l, with iterates T-2, T-3, etc. With 
TO(l;) == ~, (F25) becomes valid for all integers n. 

27 This limit can in fact be expressed as ,B(O)(c), see (F28). 
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(F28) form 

Except to zeroth order the points rw naturally 
need not lie on S (0). This suggests (what we have 
already presaged by the notation) that we seek a 
formal series S(CT) such that the representation 

(F29) 

will be valid to all orders under the identification 
(F27), which there is no need to modify. And it is 
indeed easy to obtain the appropriate conditions 
(differential equation and initial condition) deter­
mining S to higher orders. We could then develop 
a rigorous theory, with analogues of the results 
in the main body of this paper. It is simpler, however, 
to reduce the problem to the one that we have 
already exhaustively analyzed. 

The crucial step is to imbed the sequence rm 
in a continuous trajectory satisfying an autonomous 
system of differential equations. That is, we seek a 
function nW such that the curve ~\~, CT) defined 
as the solution of the system 

~; = n(~t) 

determined by the initial condition 

~t(~, 0) = ~ 

(F30) 

(F31) 

passes through the points in the sequence for CT 

given by (F27): 

(F32) 

We shall show that n is determined (and uniquely) 
as a series to all orders by this condition (required 
to hold for arbitrary O. 

Obviously it suffices to determine n merely so 
that (F32) holds with n = 1, 

~\~, e) = T(~), (F33) 

since it will then automatically hold for all larger n 
by an induction based on the calculation 

~\~, ne + e) = ~\~\~, e), ne) 

= ~t(TW, ne) = Tn(T(~» = r+ 1W, (F34) 

where the first equation is an instance of (A7), the 
second will follow from (F33), the third will be an 
instance of the induction hypothesis (F32) , and the 
fourth is part of (F25). Now by a Taylor expansion 

~t(~, e) = ~t(~, 0) + e ~:(~, 0) + !e2 ~:.C~, 0) + ... 
= { + e nW + !e2 n{W . nW + '.' , (F35) 

which by (F24) and (F33) may be written in the 

n + !e nc n + ... = D, (F36) 

omitting the argument ~ everywhere. Inverting this 
we have immediately 

n = D - !e Dc D + ... . (F37) 

The desired representation (F29) is now obviously 
obtained merely by taking 

S(CT) == ~t(~, CT). (F38) 

It is at last a trivial matter to bring this theory 
under that of the main body of the paper. Treating 
n as a continuous variable and calling it s now, or 
in other words defining 

(F39) 

and introducing a redundant angle variable 8 equal 
to s up to an arbitrary additive integer, and finally 
defining28 

x == (~, 8), 

we have a system in standard form 

x. = f == (e n, 1). 

(F40) 

CF41) 

This is nearly recurrent, since to zeroth order ~ 

is constant and 8 increases uniformly, returning to 
its initial value (up to an integer, which is all that 
has meaning for an angle value!) each time s in­
creases by unity. Therefore the general theory 
applies. The introduction of nice variables is of 
course utterly trivial, being given by 

z =~, cf> = 8. (F42) 

And the reduced system is just (F30) with ~ in­
stead of ~t. The only point to this otherwise rather 
farcical merry-go-round is that the further de­
velopments of the theory, and especially the proof 
that the formal series is really an asymptotic repre­
sentation of the true solution, is secured thereby. 

We close with a brief description of the reverse 
procedure. Had we chosen to develop the mapping 
theory in full, we could have based the theory of 
nearly recurrent systems on it by choosing for ~ 

space a hypersurface in x space cutting across the 
loops. The mapping would then be obtained by 
starting from any point ~ in the hypersurface and 
following the solution of (B4) around until it first 
again intersects the hypersurface in a point to be 
called T(1,;). Thus we see that the two theories are 
completely equivalent. 

28 Thus x space is topologically the product of l; space 
with a circle. 
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Erratum: Spin and Statistics with an Electromagnetic Field 
[J. Math. Phys. 3, 50 (1962)] 

DAVID G. BOULWARE 

Harvard University, Cambridge, Massachusetts 

T HE proof of the positive frequency character 
of the series expansion of 

on p. 54 is not correct. The general term should be 
F,,(~, ~, pI, p"), where 

Fn(~' x, p', p") 

(-iet 1" = -- dYI 
n! ° 

... dYnf(~, 0YI) ... f(~, 0, Yn) 

X eip"(,p' I(A O(YI) '" A O(Yn» + I p") 

= -ie J (p' IA °1 p''') dp'" 

X iX

' eiP'(x-Y)f(~, 0, y) dyFn_I(~' y, pi", p"). 

We assume 

Pn-l(~' X, p"', p") = J dK dK'(J(KO) (J(K'O) 

Then, Fn-l(~' ~, p"', p") is a positive frequency 
function of ~o. 

For ~o > X
O > 0, FI(t x, p"', p") satisfies this 

condition with 

FI(K, K',p''',p'') = (e/2)(,p'" IAol p") 

X { li(K - p") o(K' - p" + p''') o(K'O - k) 

[ 
o(KO - 1>",0 - k) - li(KO - P"O)] 

X "0 "'0 k p - p -

+ o(K') li(K - pi") 

[ 
5(KO - p'''O) - 5(KO - plIO - k)]} 

X "0 "'0 + k ' p -p 

k = [(p" _ p",)2]l. 

Then, 

Fn(K, K', pi, p") = (e/2) 

X J (,p' IAol p"') dp"'F,,_I(K, K', p"', p") 

X d3k dK dK' 5(p' + k + K' - K) 

{(
o(KI - K' - k) li(K + K) 

X KO K'O kO 10 - -' - p 

X [5(KO - p'O _ kO - K 'O) - o(Ko1- KO)]) 

_ (5(K' - K') li(K - p' - K') 
K O + kO _ p'O _ K'O 

By induction, Fn(t ~, pi, p") is a positive frequency 
function of ~o. 
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